Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Decentralized Control of a Quadrocopter Swarm

https://doi.org/10.17587/mau.17.774-782

Abstract

In this article the authors propose a decentralized control algorithm for a swarm consisted of quadcopters, which are unmanned aerial vehicles (UAV) lifted and propelled by four rotors. The first step was derivation of a quadcopter flight dynamic (math) model and its further linearization. The math model was derived on the basis of Newton and Euler equation of motion. The next step was to design a trajectory control algorithm by using PD regulator for the trajectory error minimization. After designing and approbation of the control algorithm of a unit quadcopter, the authors proceeded further with the task of a group control. Originally, the authors set several requirements to the control algorithm of the quadcopter for a group flight, e.g. cohesion and safety of the flights, decentralization and scalability of the control algorithm. As a ground algorithm they selected C. Reynolds rules designed for "boids". In order to make it possible to switch a quadcopter group flight from the swarm mode to the formation mode, in addition to Reynolds rules the authors developed the forth rule called "Formation". Before designing of the decentralized control for a quadcopter swarm, the authors solved similar tasks related to the kinematic control and dynamic control of the agents moving in 2D. The authors set several experiments in a "Universal Mechanism" and "Matlab" of the quadcopter group flight of10 agents with independent control systems. The above-mentioned experiments proved the efficiency of the designed decentralized control algorithm. The modeling details and experiment results are also presented in the paper.

About the Authors

S. L. Zenkevich
Robotic Center for Education and Research at Bauman Moscow State Technical University
Russian Federation


N. K. Galustyan
Robotic Center for Education and Research at Bauman Moscow State Technical University
Russian Federation


References

1. Cutler M., How J. P. Actuator Constrained Trajectory Generation and Control for Variable-Pitch Quadrotors // AIAA Guidance, Navigation, and Control Conference (GNC). Minneapolis, Minnesota, August 2012.

2. Lee T., Leok M., McClamroch N. H. Geometric Tracking Control of a Quadrotor UAV on SE(3) // 49th IEEE Conference on Decision and Control. 2011.

3. Mellinger D., Kumar V. Minimum Snap Trajectory Generation and Control for Quadrotors. GRASP Lab., University of Pennsylvania, 2011.

4. Kushleyev A., Mellinger D., Kumar V. Towards A Swarm of Agile Micro Quadrotors. GRASP Lab, University of Pennsylvania, 2013.

5. Thorhallur Tomas Buchholz, Dagur Gretarsson. Construction of a Four Rotor Helicopter Control System // S. M. Thesis. Technical University of Denmark, February 2009.

6. Hoffman G. M., Huang H., Waslander S. L., Tomlin C. J. Quadrocopter Helicopter Flight Dynamics and Control: Theory and Experiment // AIAA Guidance, Navigation and Control Conference and Exhibit, August 2007, Hilton Head, South Carolina.

7. Hong S. K. Fuzzy logic based closed-loop strap down attitude system for unmanned aerial vehicle (UAV). Department of Aerospace Engineering, Sejong University, 2005.

8. Vasarhelyi G., Virigh Cs., Somoijai G., Tarcai N., SzoVenyi T., Nepusz T., Vicsek T. Outdoor flocking and formation flight with autonomous aerial robots. Department of Biological Physics, Eotvos University, Hungary, 2014.

9. Hoffmann G., Huang H., Waslander S., Tomlin C. Precision flight control for a multi-vehicle quadrotor helicopter testbed // Control engineering practice. 2011. Vol. 19 (9). P. 1023-1036.

10. Reynolds C. Flocks, birds, and schools: A distributed behavioural model // Comput. Graph. 1987. Vol. 21, N. 4. P. 25-34.

11. Зенкевич С. Л., Галустян Н. К. Синтез и апробация алгоритма управления движением квадрокоптера по траектории // Мехатроника, автоматизация, управление. 2015. № 8. С. 530-535.

12. Морозова Н. С. Управление движением строя для мульти-агентной системы, моделирующей автономных роботов // Вестник московского университета. Сер. 15. Вычислительная математика и кибернетика. 2015. № 4. С. 23-31.

13. Иванов Д. Я. Построение формаций в группах квадрокоптеров с использованием виртуального строя // XII Всероссийское совещание по проблемам управления ВСПУ. Москва, 2014.

14. Зенкевич С. Л., Ющенко А. С. Основы управления мани-пуляционными роботами. М.: Изд-во МГТУ, 2004.

15. Голубев Ю. Ф. Основы теоретической механики. М.: Изд-во МГУ, 2000.

16. Каляев И. А., Гайдук А. Р., Капустян С. Г. Модели и алгоритмы коллективного управления в группах роботов. М.: Физматлит, 2009.

17. Иванов В. А., Медведев В. С. Математические основы теории оптимального и логического управления. М.: Изд-во МГТУ, 2011.

18. Бесекерский В. А., Попов Е. П. Теория систем автоматического управления. СПб.: Профессия, 2007.

19. Белоконь С. А., Золотухин Ю. Н., Мальцев А. С., Нестеров А. А., Филиппов М. Н. Управление параметрами полета квадрокоптера при движении по заданной траектории // Автометрия. 2012. № 5. С. 32-41.

20. Universal Mechanism - the software for modeling of dynamics. URL: http://www.universalmechanism.com

21. Примеры компьютерной апробации алгоритма для плоской кинематической задачи. URL: www.youtube.com/watch?v= TMI23zxlNso, www.youtube.com/watch?v=lkr6sEvJ6Ek

22. Примеры компьютерной апробации алгоритма для плоской динамической задачи. URL: https://www.youtube.com/watch?v= yyidxOUm-o8

23. Примеры компьютерной апробации алгоритма управления квадрокоптером в МАС. URL: www.youtube.com/watch?v= 8a3Bgpg3Vas, www.youtube.com/watch?v=aORtgg11aNk


Review

For citations:


Zenkevich S.L., Galustyan N.K. Decentralized Control of a Quadrocopter Swarm. Mekhatronika, Avtomatizatsiya, Upravlenie. 2016;17(11):774-782. (In Russ.) https://doi.org/10.17587/mau.17.774-782

Views: 1118


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)