Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Simulation of the Actuator Dynamics of the Virtual Robots in the Training Complexes

https://doi.org/10.17587/mau.17.762-768

Abstract

The topic of the article is the problem of the actuator dynamics simulation for the training complexes. Usually, when the mathematical model for a motor is formulated, its passport parameters are used: starting torque, idle speed and electromechanical time constant. The actuator creates the control action, which makes it possible to control the relative motion of the two joining rigid bodies. For the real-time dynamic simulation of the articulated rigid bodies the method of the sequential impulses is proposed. within this method the actuator dynamics is realized by means of a special constraint, which correlates the bodies' coordinates with the engine's angle rotation. In order to model the complex mechanisms, which are controlled by a single motor, a special "repeater" constraint is proposed. This constraint allows us to simulate the movement of the manipulator gripper jaws. The method of the sequential impulses with stabilization on the basis of the split impulses is iterative, while the use of the specific criterions for the end of iteration allows a real-time simulation. jhe proposed algorithms and methods are implemented in the software modules written in C+ +. Their approbation was carried out in a dynamic subsystem for a robot simulator. The studies demonstrated that the proposed methods and algorithms allow us to solve the problems, associated with implementation of different kinds of robots control. Such technologies can also be used in the virtual labs, simulation complexes, systems of augmented virtual environment and other applications.

About the Authors

Е. V. Strashnov
Scientific Research Institute for System Analysis, RAS
Russian Federation


M. A. Torgashev
Scientific Research Institute for System Analysis, RAS
Russian Federation


References

1. Asada H. Introduction to Robotics. Lecture Notes, 2005.

2. Spong M. W., Hutchinson S., Vidyasagar M. Robot Modeling and Control. New York: John Wiley & Sons, Inc., 2006.

3. Тягунов О. А. Математические модели и алгоритмы управления промышленных транспортных роботов // Информационно-измерительные и управляющие системы. 2007. Т. 5, № 5. С. 63-69.

4. Кардонов Г. А. Электрические машины: Курс лекций. СПб.: Санкт-Петербургский государственный институт точной механики и оптики, 2002. 145 с.

5. Weinstein R., Guendelman E., Fedkiw R. Impulse-Based Control of Joints and Muscles. IEEE Transactions on Visualization and Computer Graphics // Ref. Libr. 2008. Vol. 14, N. 1. P. 37-46.

6. Kenny Erleben. Stable, robust, and versatile multibody dynamics animation, PhD thesis, University of Copenhagen, 2004.

7. Steffen Wittmeier. Physics-Based Modeling and Simulation of Musculoskeletal Robots, PhD thesis, Technical University of Munich, 2014.

8. Михайлюк М. В., Страшнов Е. В. Моделирование системы связанных тел методом последовательных импульсов // Труды НИИСИ РАН. 2014. Т. 4, № 2. С. 52-60.

9. Страшнов Е. В., Михайлюк М. В. Моделирование ограничений на относительное движение шарнирно связанных тел // Мехатроника, автоматизация, управление. 2015. Т. 16, № 10. С. 678-685.

10. Михайлюк М. В., Страшнов Е. В. Моделирование динамики системы связанных тел с учетом трения в шарнирах // Наука и Образование. МГТУ им. Н. Э. Баумана. Электрон. журн. 2016. № 1. С. 108-124.

11. Курс теоретической механики: Учебник для вузов / В. И. Дронг, В. В. Дубинин, М. М. Ильин и др.; Под общ. ред. К. С. Колесникова / М.: Изд-во МГТУ им. Н. Э. Баумана, 2005.

12. с.

13. DAGU MK II claw with servo motor. URL: http://www. electronshik.ru/item/mk-ii-robotic-claw-with-servo-motor-1263193 (дата обращения: 18.02.2016).

14. Shabana A. A. Computational Dynamics, Third edition, John Wiley & Sons Inc., 2010.

15. URL: http://electroprivod.ru/wg7152.htm (дата обращения: 20.02.2016).


Review

For citations:


Strashnov Е.V., Torgashev M.A. Simulation of the Actuator Dynamics of the Virtual Robots in the Training Complexes. Mekhatronika, Avtomatizatsiya, Upravlenie. 2016;17(11):762-768. (In Russ.) https://doi.org/10.17587/mau.17.762-768

Views: 515


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)