Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Metamaterials in the Onboard Wireless Reception Systems and Conversion of the Microwave Energy of the Mobile Autonomous Devices

https://doi.org/10.17587/mau.17.615-620

Abstract

Significant progress has been recently achieved in the field of development of numerous autonomous mobile ground, water, air and space device-robots, micro robots, unmanned aerial and floating vehicles, pico- and nanosatellites, which perform diverse tasks without human presence and are remote controlled by people. The power loading of such mobile autonomous devices determining the duration of functioning of the service and functional onboard informational and control systems remains one of the intractable problems. The work analyzes the structure scheme of the onboard equipment for reception and conversion of the microwave energy of the mobile autonomous devices. It demonstrates that the elements, which as metamaterials can be used in the onboard equipment, are emitters of rectenna and high harmonic filters. The use of the microelectronic and mi- cromachinery technologies, metamaterials as a part of rectenna and filters based on the substrate waveguides integrated, allows us to halve the amount of the energy transfer canals and dramatically decrease the mass characteristic of the reception equipment and conversion of the microwave energy mobile autonomous devices in comparison with the analogues.

About the Authors

А. А. Zhukov
Moscow Aviation Institute (National Research University)
Russian Federation


А. А. Adzhibekov
Russian Space Systems
Russian Federation


М. А. Kudrov
MIPT
Russian Federation


K. А. Zudov
MIPT
Russian Federation


A. V. Geliev
MIPT
Russian Federation


V. G. Veselago
MIPT
Russian Federation


References

1. ICINCO 2015 // Proc. of 12th International Conference on Informatics in Control, Automation and Robotics. France. 2015.

2. Макриденко Л. А., Волков С. Н., Ходненко В. П. Концептуальные вопросы создания и применения м алых космических аппаратов // Вопросы электромеханики. Труды ВНИИЭМ. 2010. Т. 114. С. 15-26.

3. Suh Y.-Ho., Chang K. A High-Efficiency Dual-Frequency Rectenna for 2,45 - and 5,8 GHz Wireless Power Transmission // IEEE Transactions on Microwave Theory and Techniques. 2002. V. 50, N. 7. P. 1784-1789.

4. Воскресенский Д. И., Гостюхин В. Л., Максимов В. М., Пономарев Л. И. Устройства СВЧ и антенны. М.: Радиотехника, 2006. 376 с.

5. Никольский В. Н. Электродинамика и распространение радиоволн. М.: Наука, Гл. ред. физматлит, 1973. 609 с.

6. Huang W., Zhang B., Huang X. C. K., Liu C. Study on an S-Band Rectenna Arrey for Wireless Microwave Power Transmission // Progress In Electromagnetics Research. 2013. V. 135. P. 747-758.

7. Аджибеков А. А., Бредихин И. Ю., Веселаго В. Г., Жуков А. А., Капустян А. В., Корпухин А. С. Малогабаритная узконаправленная антенна на основе слоистого 3D-метаматериала // Успехи современной радиоэлектроники. 2013. № 1. C. 93.

8. Аджибеков А. А., Бредихин И. Ю., Капустян А. В., Жуков А. А. Экспериментальная оценка характеристик малогабаритной антенны на основе метаматериала // Антенны. 2013. № 6. C. 28.

9. Заргано Г. Ф., Земляков В. В., Крутиев С. В. Полосно-пропускающие фильтры на индуктивных диафрагмах в гребневых волноводах, реализованных по SIW-технологии // Электромагнитные волны и электронные системы. 2015. № 6. С. 33-37.

10. Deslandes D., Wu K. Integrated microstrip and rectangular waveguide in planar form // IEEE Microwave Wireless Components Letter, 2001. V. 11. P. 68-70.

11. Henry M., Free C. E., Izqueirdo B. S., Batchelor J., Young P. Millimeter wave sub strate integrated waveguide antennas: Design and fabrication analysis // IEEE Transactions on Advanced Packaging. February 2009. V. 32, № 1.

12. Wang Y.-T., Zhu X.-W., Tian L. Design of crossed-SIW directional couplers with different angles // APMC. 16-20 December 2008. P. 1-4.

13. Tang H.-J., Hong W., Chen J.-X., Luo G.-Q., Wu K. Development of millimeter-wave planar diplexers based on complementary characters of dual-mode substrate integrated waveguide filters with circular and elliptic cavities // IEEE Transactions on Microwave Theory and Techniques. April 2007. V. 55. P. 776-782.

14. Chen Y. J., Hong W., Wu K. Novel substrate integrated waveguide xed phase shifter for 180-degree directional coupler // Proc. of IEEE MTT-S. June 2007. P. 189-192.

15. Mehdi D., Keltouma N., B»ua//a T. H. C., Feham M. Design of Substrat Integerated Waveguide Bandpass Filter of SCRRs in the Microstrip Line // International Journal of Engineering Research and General Science. April-May 2014. V. 2. Iss. 3. P. 302-314.

16. Sotoodeh Z., Biglarbegian B., Kashani F. H., Ameri H. A Novel Bandpass Waveguide Filter // Progress In Electromagnetics Research Letters. 2008. V. 2. P. 141-148.

17. Вендик И. Б., Вендик О. Г. Метаматериалы и их применение в технике сверхвысоких частот (Обзор) // Журнал технической физики. 2013. Т. 83. Вып. 1. С. 4-28.

18. URL: www.cst.com.

19. Moscow Aviation Institute (National Research University)


Review

For citations:


Zhukov А.А., Adzhibekov А.А., Kudrov М.А., Zudov K.А., Geliev A.V., Veselago V.G. Metamaterials in the Onboard Wireless Reception Systems and Conversion of the Microwave Energy of the Mobile Autonomous Devices. Mekhatronika, Avtomatizatsiya, Upravlenie. 2016;17(9):615-620. (In Russ.) https://doi.org/10.17587/mau.17.615-620

Views: 562


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)