Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

The Moment Problem in Control Problems of Elastic Dynamic Systems

Abstract

Methods for damping for oscillations of elements of complex mechanical systems such as strings and membranes began to develop rapidly in the 70s of the last century. The most significant results Were obtained by J. -L. Lions, D. Lagnesse, D. Russel, A. Butkovskiy, Which dealt With cases of string oscillations (With various types of restraints at the borders) and circular membrane. In this paper We consider the control problem of elastic dynamic systems modeled by partial differential equations of the fourth order, hyperbolic by Petrovsky, Which describe, in particular, oscillations in antennas and other elements of space platforms, pipelines, bridge openings. The control problem is to find the minimum time to damp oscillations arisen due to initial perturbation of the system. To solve this problem We derive trigonometric moment problem (infinite system of integral equations of first order for the time component of the control function). We prove the existence of the minimum time and optimal control in case of beams and plates. Wherein time for damping of oscillations and optimal control are given in explicit form. To obtain these results We study the asymptotic behavior of eigenvalues of the corresponding spectral problem by using the classic theorem of N. Levinson (on the basis of the Riesz exponential systems) and Bellman (of almost orthogonal trigonometric systems). Note that the classical solutions of the moment problem presented in the form of infinite series of functions and to obtain the elements of these series is a separate difficult problem. Therefore in order to find the approximate solution We consider the class of control functions such as point moving and slim dampers and build effective numerical methods. Given examples confirm that proposed numerical methods alloW us to find solution of problem With sufficient accuracy.

About the Authors

A. G. Atamuratov
Pepsico Holding LTD, Moscow, 125315, Russian Federation
Russian Federation


I. E. Mikhailov
Dorodnicyn Computing Centre, FRC CSC RAS, Moscow, 119333, Russian Federation
Russian Federation


L. A. Muravey
Moscow Aviation Institute (State Research University), Moscow,121552, Russian Federation
Russian Federation


References

1. Lagness J. Control of wave process with distributed controls supported on a subregion // SIAM Journ. Control and Optim. 1983. Vol. 1, N. 1. P. 68-85.

2. Lions J. L. Exact controllability, stabilization and perturbations for distributed system // SIAM Review. 1988. Vol. 30, N. 1. P. 1-68.

3. Красносельский М. А., Крейн М. Г. Основные теоремы о расширении эрмитовых операторов и некоторые их применения к теории ортогональных полиномов и проблеме моментов // УМН. 1947, 2:3 (19), С. 60-106.

4. Ахиезер Н. И., Крейн М. Г. О некоторых вопросах теории моментов. ДнТВУ, 1938. 256 с.

5. Ахиезер Н. И., Глазман И. М. Теория линейных операторов в гильбертовом пространстве. М.: Наука, Физматлит, 1966. 544 с.

6. Ахиезер Н. И. Классическая проблема моментов. М.: Государственное издательство физико-математической литературы, 1961. 314 с.

7. Levinson N. Gap and density theorem // Amer. Math. Soc. Colog. Publ. 1940. Vol. 26.

8. Bellman R. Almost orthogonal series // Amer. Math. Soc. 1944. Vol. 50.

9. Russel D. Controllability and stabilization theory for linear partial differential equations // SIAM Review. 1978. Vol. 20, N. 5. P. 639-739.

10. Бутковский А. Г. Методы управления системами с распределенными параметрами. М.: Наука, 1975. 568 с.

11. Бутковский А. Г. Приложение некоторых результатов теории чисел к проблеме финитного управления и управляемости в распределенных системах // ДАН СССР. 1976. Т. 227, № 2. С.309-311.

12. Muravey L. A. On the suppression on membrane oscillations // Summaries of IUTAM Symposium "Dynamical problems of rigid-elastic system", Moscow, 1990. Р. 50-51.

13. Muravey L. A. Mathematical problems on the damp of vibration // Preprint of IFAC Conference "Identification and system parameter estimations". Budapest. 1991. Vol. 1. P. 746-747.

14. Билалов Б. Т. О базисности системы {eitjnxsinnx} и экспонент со сдвигом // ДАН РАН. 1995. Т. 345, № 2. С. 644-647.

15. Билалов Б. Т., Муравей Л. А. О гашении колебаний больших механических систем // Труды международного симпозиума Intels-96. С.-Петербург. Ч. II. 1996. С. 246-254.

16. Makmudov A., Muravey L. The problem of string vibrations damping // Proceedings of the First International Conference on Nonlinear Analysis and Nonlinear Modeling, Fethiey, Turkey, 2001. Р. 174-182.

17. Асланов С. Ж., Михайлов И. Е., Муравей Л. А. Аналитические и численные методы в задаче гашения колебаний струны точечным демпфером // Мехатроника, автоматизация, управление. 2006. № 7. С. 28-35.

18. Атамуратов А. Ж. О гашении колебаний прямоугольной мембраны // Вестник Тверского государственного университета. Серия Прикладная математика. 2013. № 2. С. 49-59.


Review

For citations:


Atamuratov A.G., Mikhailov I.E., Muravey L.A. The Moment Problem in Control Problems of Elastic Dynamic Systems. Mekhatronika, Avtomatizatsiya, Upravlenie. 2016;17(9):587-598. (In Russ.)

Views: 372


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)