Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Quantum-Wave Dualism for Description of the Dynamic Systems

https://doi.org/10.17587/mau.17.453-457

Abstract

On the basis of the new formulation of the problem of three bodies were obtained: 1) a new definition of the locus of the points of an equilateral hyperbola; 2) a new "dynamic formula of the golden section" to the representative point of a scalar field displacement of the center; 3) a new interpretation of the deleted point as the point preceding the transition to another branch of the rectangular hyperbola. It is shown that the author introduced the space of possible states of a dynamical system described by a scalar field as a hypersphere with a displaced center - quantized punctures offset center. That is in addition to the known quantization of time and the level of quantization is proposed a new method based on the quantization introduced by the author of the concept of the quantum motion, which is in contrast to the "photon" of theoretical physics is filled with rigorous mathematical content. Thus, the overall dimension of the state space and the space of possible states is (3n + 2). It is proved that the curvature of the space of possible states (phase space + hyperspace displacement of the center), as predicted by Einstein, is a geometric property of the scalar field. The space of possible states is a pulsating wave hyperspherical variable curvature center coordinates which are the algebraic sum of scalar waves of torsion on the branch of an equilateral hyperbola and scalar waves exponential motion. The proof is based on the quantum analogue of the Pythagorean theorem.

About the Author

V. A. Podchukayev
Institute of Problems of the Precise Mechanics and Control of RAS; Saratov State Law Academy
Russian Federation


References

1. Подчукаев В. А. Математическая модель динамического хаоса // Изв. Сарат. ун-та, Нов. Сер. Т. 12. Сер. Математика. Механика. Информатика. 2012. Вып. 4. С. 27-31.

2. Podchukaev V. A., Peredelskii G. I., Filonovich A. V. The geometric properties of free motion the dynamical systems in phase spase // Proc. of 12th Internat. Conf. on Actual Problems of Electronic Instrument Engineering (APEIE). Novosibirsk, October 2-4, 2014. Vol. l. P. 35-40.

3. Подчукаев В. А. Аналитические методы теории автоматического управления. М.: Физматлит, 2002. 256 с.

4. Подчукаев В. А. К задаче определения области возможных состояний нестационарной линейной системы // Автоматика и телемеханика. 1976. № 7. С. 187-189.

5. Подчукаев В. А. Теория автоматического управления (аналитические методы). М.: Физматлит, 2005. 392 с.

6. Will С. M. Living Rev. Relat. 9, 3 (2006). URL: http://www.livingreviews. org/lrr-2006-3; gr-qc/0510072.

7. Dicke R. H. New Research on Old Gravitation // Science. 1959. Vol. 129, Iss. 3349. P. 621-624.

8. Подчукаев В. А. Анализ скалярных полей динамических систем // Известия ВУЗов. Приборостроение. 2016. Т. 59. № 1. С. 5-24.

9. Александров А. Г., Подчукаев В. А. Численный метод определения передаточных функций систем с переменными параметрами // Известия ВУЗов. Приборостроение. 1976. № 7. С. 37-42.


Review

For citations:


Podchukayev V.A. Quantum-Wave Dualism for Description of the Dynamic Systems. Mekhatronika, Avtomatizatsiya, Upravlenie. 2016;17(7):453-457. (In Russ.) https://doi.org/10.17587/mau.17.453-457

Views: 427


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)