Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Qualitative Distribution of Modes in the Systems with Distributed Parameters

https://doi.org/10.17587/mau.17.445-452

Abstract

There are many continuous technological processes of high power, with huge material and energy flows. Their parameters can change not only in time, but also in space. The hydrolithospheric processes, the processes connected with heat treatment, diffusion, etc. (in the control theory this class of processes is called objects with the distributed parameters), can serve as an example. Mathematical models of such processes either are not known, or described by the equations in private derivatives. The main approaches, used for analysis of the linear objects with the distributed parameters [6-14] are based on the theory of differential equations in private derivatives and frequency methods. Without a loss of the linear objects with the distributed parameters we will set the task of application of the qualitative theory [15-19] for a synthesis of the control systems with the distributed parameters. We should note that for the distributed objects a decomposition of their mathematical models on the own vector - functions of the operators of objects, the own movement of which is described by large dimensional differential equations, takes place. The technique of synthesis of the distributed regulators using the qualitative theory is considered on the example of construction of the closed control systems of the heat distribution process in a plate of the final sizes.

About the Authors

V. V. Grigoriev
ITMO University
Russian Federation


S. V. Bystrov
ITMO University
Russian Federation


O. K. Mansurova
National Mineral Resources University (Mining University)
Russian Federation


I. M. Pershin
North-Caucasian Federal University, Pyatigorsk Branch
Russian Federation


M. I. Pershin
Southern Federal University
Russian Federation


References

1. Першин И. М. Синтез систем с распределенными параметрами. Пятигорск: РИО КМВ, 2002. 212 с.

2. Малков А. В., Першин И. М. Системы с распределенными параметрами. Анализ и синтез. М.: Научный мир, 2012. 476 с.

3. Бутковский А. Г. Структурная теория распределенных систем. М.: Наука, 1977. 320 с.

4. Сиразетдинов Т. К. Оптимизация систем с распределенными параметрами. М.: Наука, 1977. 479 с.

5. Григорьев В. В., Быстров С. В. Першин И. М. Синтез распределенных регуляторов: учеб. пособие. СПб.: Изд-во СПб. ГУИТМО, 2011. 200 с.

6. Martirosyan A. V., Martirosyan K. V., Pershin I. M. Analysis of the Caucasus Mineral Waters' Field's Modeling // Modern Applied Science. 2015. Vol. 9, N. 1. P. 204-210.

7. Chernyshev A. B., Martirosyan K. V. Analisys of the nonlinear distributed control system's sustainability // Journal of Mathematics and Statistics. 2014. 10 (3). P. 316-321.

8. Martirosyan A. V., Martirosyan K. V., Kapylova T. S. The model of mineral water deposits sustainable management using the decision support system // World Applied Sciences Journal. 2013. N. 27. P. 101-106.

9. Martirosyan A. V., Martirosyan K. V. Modeling of information system "Caucasus Mineral Water's hydromineral resources" // 4th International Scientific and Practical Conference "Science and Society". London: SCIEURO, 2013. Р. 16-24.

10. Martirosyan A. V., Yanukyan E. G., Martirosyan K. V. Methods of complex object's transfer function calculation for distributed control system // Journal of Mathematics and Statistics. 2014. N. 10 (3). Р. 23-27.

11. William By Porter A. Sensitivity problems in distributive systems // Int. J. Control. 1976. V. 5. P. 159-177.

12. Першин М. И. Исследование погрешностей динамических характеристик распределенных объектов при аппроксимации // Современная наука и инновации. 2014. Вып. № 4 (8). С. 46-50.

13. Pasca La., Levis A. H. and Jin V. Y.-Y. On the design of Distributed Organisational structures // Automatica. 1988. V. 24, N. 1. P. 81-86.

14. Grigoriev V. V., Mansurova O. K. Qualitative exponential stability and instability of dynamical systems. Preprints of 5 th IFAK Symposium on Nonlinear Control Systems (NOLCOS'01). St.-Petersburg, 2001.

15. Григорьев В. В., Быстров С. В., Рабыш Е. Ю., Мансурова О. К. Использование условий качественной неустойчивости для оценки динамических процессов // Научно-технический вестник СПБГУИТМО. Санкт-Петербург. 2012. Т. 77. № 1. С. 41-46.

16. Быстров С. В., Григорьев В. В., Рабыш Е. Ю., Мансурова О. К. Анализ качества переходных процессов в непрерывных и дискретных системах на основе условий качественной экспоненциальной устойчивости // Мехатроника, автоматизация, управление. 2012. № 9. С. 32-36.

17. Григорьев В. В., Быстров С. В., Наумова А. К., Рабыш Е. Ю., Черевко Н. А. Использование условий качественной экспоненциальной устойчивости для оценки динамических процессов // Изв. вузов. Приборостроение. 2011. Т. 54, № 6. С. 24-30.

18. Григорьев В. В., Быстров С. В., Мансурова О. К., Першин И. М. Анализ устойчивости линейных систем с распределенными параметрами // Мехатроника, автоматизация, управление. 2013. № 9. С. 2-5.

19. Воронов А. А. Основы теории автоматического управления. Особые линейные и нелинейные системы. М.: Энергия, 1981. 303 с.


Review

For citations:


Grigoriev V.V., Bystrov S.V., Mansurova O.K., Pershin I.M., Pershin M.I. Qualitative Distribution of Modes in the Systems with Distributed Parameters. Mekhatronika, Avtomatizatsiya, Upravlenie. 2016;17(7):445-452. (In Russ.) https://doi.org/10.17587/mau.17.445-452

Views: 473


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)