Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Backstepping and ADAR Method in the Problems of Synthesis of the Nonlinear Control Systems

https://doi.org/10.17587/mau.17.435-445

Abstract

In this paper the authors explore comparison of the famous method of analytical design of the aggregated regulators (ADAR), developed in the works of the scientific school of the Southern Federal University (Russia), and the method of back-stepping. In a well-known review of P. Kokotović, the method of backstepping was mentioned as a milestone innovation in the control theory of the last decade of the 20th century. For the simplest nonlinear objects, which are derived to the structure of the serially connected integrators looped with feedbacks, the ADAR method and the backstepping method are formally deduced to the same results. But any variation of this structure, as well as an increase of the dimension and complexity of the control object model, leads to major difficulties for deriving of the analytical expression of the control law. The ADAR method of the Synergetic Control Theory is a way of forming and resonance exciting of the internal forces of co-interaction. These forces emerge in the desired structures, i.e. attractors, in a phase space of the designed systems, which are confirmed with a physical essence of the above system. In the paper the comparison of ADAR method with the backstepping method is presented with well-known examples of the nonlinear control systems' design problems. The provided numerical examples and computer simulation results clearly demonstrate the explicit advantages of ADAR method in comparison with the backstepping method by the following criteria: (i) the nonlinear regulators of the analytical design procedure and regulators of the physical validity; (ii) regulator settings of the selection validity and its value; and (iii) provision of the closed-loop system's asymptotic stability.

About the Authors

A. A. Kolesnikov
Southern Federal University, Institute of Computer Technologies and Information Security
Russian Federation


Al. A. Kolesnikov
Southern Federal University, Institute of Computer Technologies and Information Security
Russian Federation


A. A. Kuz'menko
Southern Federal University, Institute of Computer Technologies and Information Security
Russian Federation


References

1. Колесников А. А. Синергетическая теория управления. М.: Энергоатомиздат, 1994. 344 с.

2. Колесников А. А. Синергетические методы управления сложными системами: теория системного синтеза. М.: КомКнига, 2006. 240 с.

3. Колесников А. А., Веселов Г. Е., Попов А. Н. и др. Синергетические методы управления сложными системами: Механические и электромеханические системы. М.: КомКнига, 2006. 304 с.

4. Колесников А. А., Кузьменко А. А., Веселов Г. Е. Новые технологии проектирования современных систем управления процессами генерирования электроэнергии: учебное издание. М.: Издательский дом МЭИ, 2011. 280 с.

5. Колесников А. А. Новые нелинейные методы управления полетом. М.: Физматлит, 2013. 196 с.

6. Ioannou P. A., Sun J. Robust Adaptive Control. New York: Dover, 2012. 848 p.

7. Isidori A. Nonlinear control systems an introduction. Berlin: Springer-Verlag, 1989. 545 p.

8. Мирошник И. В., Никифоров В. О., Фрадков А. Л. Нелинейное и адаптивное управление сложными динамическими системами. СПб.: Наука, 2000. 549 с.

9. Фуртат И. Б. Модифицированный алгоритм обратного обхода интегратора // Мехатроника, автоматизация, управление. 2009. № 10. С. 2-7.

10. Krstić M., Kanellakopoulos M., Kokotović P. V. Adaptive nonlinear control without overparametrization // Systems & Control Letters. 1992. Vol. 19, Iss. 3. P. 177-185.

11. Polycarpou M. M., Ioannou P. A. A robust adaptive nonlinear control design // Automatica. 1996. Vol. 32, Iss. 3. P. 423-427.

12. Li Y., Qiang S., Zhuang X., Kaynak O. Robust and adaptive backstepping control for nonlinear systems using RBF neural networks // IEEE Transactions on Neural Networks. 2004. Vol. 15, Iss. 3. P. 693-701.

13. Bouabdallah S., Siegwart R. Backstepping and sliding-mode techniques applied to an indoor micro Quadrotor // Proc. of IEEE Internat. Conf. on Robotics and Automation, 18-22 April 2005, Spain. Vol. 2005. P. 2247-2252.

14. Tong S., Liu C., Li Y. Fuzzy-adaptive decentralized output-feedback control for large-scale nonlinear systems with dynamical uncertainties // IEEE Transactions on Fuzzy Systems. 2010. Vol. 18, Iss. 5. P. 845-861.

15. Дружинина М. В., Никифоров В. О., Фрадков А. Л. Методы адаптивного управления нелинейными объектами по выходу // Автоматика и телемеханика. 1996. № 2. C. 3-33.

16. Колесников А. А. Аналитический синтез нелинейных систем, оптимальных относительно линейных агрегированных переменных // Известия вузов. Электромеханика. 1985. № 11. С. 9-18.

17. Колесников А. А. Аналитическое конструирование нелинейных агрегированных регуляторов по заданной совокупности инвариантных многообразий. I. Скалярное уравнение // Известия вузов. Электромеханика. 1987. № 3. С. 100-108.

18. Колесников А. А. Аналитическое конструирование нелинейных агрегированных регуляторов по заданной совокупности инвариантных многообразий. II. Векторное уравнение // Известия вузов. Электромеханика. 1987. № 5. С. 5-17.

19. Колесников А. А. Последовательная оптимизация нелинейных агрегированных систем. М.: Энергоатомиздат, 1987. 160 с.

20. Byrnes C. I., Isidori A. New results and examples in nonlinear feedback stabilization // Systems & Control Letters. 1989. Iss. 12. P. 437-442.

21. Tsinias J. Sufficient Lyapunov-like conditions for stabilization // Mat. Contr. Signals Syst. 1989. Vol. 2, Iss. 12. P. 343-357.

22. Kokotovic P. V., Sussman H. J. A positive real condition for global stabilization of nonlinear systems // Systems & Control Letters. 1989. Iss. 13. P. 125-133.

23. Kokotovic P. V., Arcak M. Constructive Nonlinear Control: progress in the 90'S // Prepr. 14th IFAC World Congress. Beijing, China, 1999.

24. Teel A. R. Global stabilization and restricted tracking for multiple integrators with bounded controls // Systems & Control Letters. 1992. Iss. 18. P. 165-171.


Review

For citations:


Kolesnikov A.A., Kolesnikov A.A., Kuz'menko A.A. Backstepping and ADAR Method in the Problems of Synthesis of the Nonlinear Control Systems. Mekhatronika, Avtomatizatsiya, Upravlenie. 2016;17(7):435-445. (In Russ.) https://doi.org/10.17587/mau.17.435-445

Views: 1360


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)