Preview

Мехатроника, автоматизация, управление

Расширенный поиск

Структурное детектирование зрительных образов для мобильного робота

https://doi.org/10.17587/mau/17.187-192

Полный текст:

Аннотация

Описывается подход к детектированию объектов в реальном масштабе времени. Процесс детектирования объектов разделен на две части: (1) генерация гипотез и (2) проверка гипотез. Генерация гипотез осуществляется с помощью простой структурной модели на основе комбинации отрезков. Проверка гипотез использует подход на основе сверточных сетей, которые формируют вектор признаков на основе адаптивной подвыборки последнего сверточного слоя. Далее признаки классифицируются алгоритмом "случайный лес". Точность данного подхода сопоставима с современными методами детектирования объектов, такими как SPPNet и RCNN, а время работы составляет 4 кадра в секунду на процессоре, что в 7раз быстрее SPPNet.

Об авторах

Н. А. Сергиевский
"Элвис-Неотек"
Россия


А. А. Харламов
ООО "Микросистемы"
Россия


Список литературы

1. Girshick, Ross Brook. From rigid templates to grammars: Object detection with structured models. University of Chicago, 2012.

2. Paul V., Jones M. J. Robust real-time face detection // International journal of computer vision. 2004. V. 57, N. 2. P. 137-154.

3. LeCun Y. Gradient-based learning applied to document recognition // Proc. of the IEEE. 1998. V. 86, N. 11. P. 2278-2324.

4. Krizhevsky A., Sutskever I., Hinton G. E. Imagenet classification with deep convolutional neural networks // Advances in neural information processing systems. 2012.

5. Fan R. E., Chang K. W., Hsieh C. J., Wang, X. R., Lin C. J. LIBLINEAR: A library for large linear classification // The Journal of Machine Learning Research. 2008. V. 9. P. 1871-1874.

6. Uijlings J. R., van de Sande K. E., Gevers T., Smeulders A. W. Selective search for object recognition // International journal of computer vision. 2013. V. 104, N. 2. P. 154-171.

7. Everingham M., Van Gool L., Williams C. K., Winn J., Zisserman A. The pascal visual object classes (voc) challenge // International journal of computer vision. 2010. V. 88, N. 2. P. 303-338.

8. Deng J., Dong W., Socher R., Li L. J., Li K., Fei-Fei L. Imagenet: A large-scale hierarchical image database // Computer Vision and Pattern Recognition. CVPR 2009. IEEE Conference on IEEE, 2009.

9. Sivic J., Russell B. C., Efros A., Zisserman A., Freeman W. T. Discovering objects and their location in images // Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on. 2005. V. 1.

10. Zitnick, Lawrence C., Dollár P. Edge boxes: Locating object proposals from edges // Computer Vision-ECCV 2014. Springer International Publishing, 2014. P. 391-405.

11. Hosang J., Benenson R., Schiele B. How good are detection proposals, really? arXiv preprint arXiv:1406.6962 (2014).

12. Girshick R., Donahue J., Darrell T., Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation // Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on. IEEE, 2014.

13. He K., Zhang X., Ren S., Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition // Computer Vision-ECCV 2014. Springer International Publishing, 2014. P. 346-361.

14. Girshick Ross. Fast R-CNN. arXiv preprint arXiv:1504.08083 (2015).

15. Лобов С. А., Сергиевский Н. А., Харламов А. А. Адаптация алгоритма сверточных нейронных сетей на ПЛИС // Программные системы: теория и приложения. 2013. № 3 (17).

16. Cheng M. M., Zhang Z., Lin W. Y., Torr P. BING: Binarized normed gradients for objectness estimation at 300fps // Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on. IEEE, 2014.

17. Akinlar, Cuneyt, Cihan Topal. EDLines: A real-time line segment detector with a false detection control // Pattern Recognition Letters. 2011. V. 32, N. 13. P. 1633-1642.

18. Chatfield K., Simonyan K., Vedaldi A., Zisserman A. Return of the devil in the details: Delving deep into convolutional nets // arXiv preprint arXiv:1405.3531 (2014).

19. Liaw A., Wiener M. Classification and regression by random-Forest // R news. 2002. V. 2, N. 3. P. 18-22.


Для цитирования:


Сергиевский Н.А., Харламов А.А. Структурное детектирование зрительных образов для мобильного робота. Мехатроника, автоматизация, управление. 2016;17(3):187-192. https://doi.org/10.17587/mau/17.187-192

For citation:


Sergievskiy N.A., Kharlamov A.A. Structural Detection of Visual Objects for Mobile Robots. Mekhatronika, Avtomatizatsiya, Upravlenie. 2016;17(3):187-192. (In Russ.) https://doi.org/10.17587/mau/17.187-192

Просмотров: 14


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)