Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Stability of a Seagoing Vessel Contour to Capsizing by a Rogue Wave

https://doi.org/10.17587/mau.16.852-860

Abstract

The topic of the article is the computational fluid dynamics method for investigation of the contour stability in the rogue waves. Sampling of the Reynolds-averaged Navier-Stokes (RANS) equations was done by the method of the control volumes. In order to solve the linear system of the scalar equations, an implicit Gauss-Seidel method was used. Pressure-velocity coupling was achieved by using the Pressure-Implicit with Splitting of Operators (PISO) algorithm. The volume of the fluid (VOF) model was used to solve a single set of the momentum equations and tracking of the volume fraction of each of the fluids throughout the domain. A geometric reconstruction scheme was implemented to represent the interface between the fluids using a piecewise-linear approach. In order to compute the translational and angular motion of the center of gravity of the vessel contour, the three degrees of freedom (3DOF) solver was used. Variable sampling in the time domain was used to ensure stability of the solution. A rogue wave with a single high central peak and two small side elevations was used in a numerical wave tank, which met most of the marine observations. The wavelength of the 30-meter high rogue waves, which can capsize marine vessels of a big displacement, was calculated. On the basis of the spatial spectrum of the rogue wave, equations of the velocity of the fluid flowing into the numerical wave tank were obtained. Due to the non-linear processes the rogue wave height reached its maximum and then collapsed to form a plunging breaker. The contour was positioned at a predetermined distance from the initial position of the rogue wave and when the contour met with the rogue wave, the heeling angle of the contour was calculated. On the basis of a series of numerical experiments, the distances and the wavelengths of the rogue waves capsizing the contours of the fishing vessels were calculated. It was discovered that the rogue waves with the length of 120-140 meters and high steepness capsize the contours of the fishing vessels with displacement up to 9260 tons.

About the Author

V. M. Dorozhko
Institute of Automation and Control Processes, Far East Branch, Russian Academy of Sciences (IACP FEB RAS)
Russian Federation


References

1. Куркин А. А., Пелиновский Е. Н. "Волны-убийцы": факты, теория и моделирование. Н. Новгород: ННГТУ, 2004. 158 с.

2. Ruban V., Kodama Y., Ruderman M. and et al. Rogue waves - towards a unifying concept: Discussions and debates // The European physical journal special topics. 2010. Iss. 185. P. 5-15.

3. Zakharov V. E. Stability of periodic waves of finite amplitude on the surface of a deep fluid // J. Appl. Mech. Tech. Phys. 1968. V. 9. N. 2. P. 190-194.

4. Zakharov V. E., Shabat A. B. Exact theory of two-dimensional self-focusing and onedimensional self-modulation of waves in nonlinear media // Soviet physics. Journal of Experimental and Theoretical Physics. 1972. N. 1. P. 62-69.

5. Пелиновский Е. Н., Слюняев А. В. "Фрики" - морские волны-убийцы // Природа. 2007. № 3. С. 14-23.

6. Чаликов Д. В. Портрет волны-убийцы // Фундаментальная и прикладная гидрофизика. 2015. Т. 5. № 1. С. 5-13.

7. Шамин Р. В. Моделирование волн-убийц на основе эволюционных дифференциальных включений // Фундаментальная и прикладная гидрофизика. 2012. Т. 5. № 1. С. 14-23.

8. Слюняев А. В., Сергеева А. В. Численное моделирование и анализ пространственно-временных полей аномальных морских волн // Фундаментальная и прикладная гидрофизика. 2012. Т. 5. № 1. С. 24-36.

9. Кузнецов С. Ю., Сапрыкина Я. В. Экспериментальные исследования возникновения волн-убийц при эволюции узкого спектра крутых волн // Фундаментальная и прикладная гидрофизика. 2012. Т. 5. № 1. С. 52-63.

10. Lawton G. Monsters of the deep (The perfect wave) // New scientist. 2001. V. 170. N. 2297. P. 28-32.

11. Rogue waves - forecast and impact on marine structures. URL: http://www.kuleuven.be/hydr/downloads/MaxWave.pdf (дата обращения: 10.06.2015).

12. Nikolkina I., Didenkulova I. Rogue waves in 2006-2010 // Natural hazards and Earth system sciences. 2011. V. 11. P. 2913-2924.

13. Extreme Seas. Design for ship safety in extreme seas. URL: http://tra2014.traconference.eu/papers/pdfs/TRA2014_Fom_28494.pdf (дата обращения: 10.06.2015).

14. Minami M., Sawada H. and et al. Study of Ship Responses and Wave Loads in the Freak Wave // Proc. of the Sixteenth International Offshore and Polar Engineering Conference. California, USA. May 28-June 2. 2006. P. 272-278.

15. Onorato M., Proment D. and et al. Rogue Waves: From Nonlinear Schrodinger Breather Solutions to Sea-Keeping Test. URL: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0054629 (дата обращения: 10.06.2015).

16. Справочник по теории корабля / Под ред. Я. И. Войткунского. Т. 2. Статика судов, качка судов. Л.: Судостроение, 1985. 440 с.

17. Buca M. P. Nonlinear Ship Rolling and Capsizing // Brodogradnja. 2006. N. 4. P 321-331.

18. Wu M., Yang В. and et al. Prediction of Ship Motions in Head Waves Using RANS Method // Proc. of the Twenty-second International Offshore and Polar Engineering Conference. Greece. 2012. P. 1112-1117.

19. Ferziger J. H. Computational Methods for Fluid Dynamics. Berlin: Springer, 2002. 431 p.

20. Yakhot V., Orszag S. Renormalization group analysis of turbulence: Basic theory // Journal of scientific computing. 1986. V. 1, N. 1. P. 1-51.

21. Hsu K. L., Chen Y. J. and et al. Ship flow computation of DTMB 5415. CFD workshop. Tokyo, Japan. March 9-11. 2005.

22. Longuet-Higgins M. S. The instability of gravity waves of finite amplitude in deep water// Subharmonics. Proc. R. Soc. 1978. V. 360. P. 489-505.

23. Fonseca N., Soares C., Pascoal R. Structural loads induced in a containership by abnormal wave conditions // Journ. Mar. Sci. Technol. 2006. N. 11. P. 245-259.

24. Liu P. C., Wu A. J. and et al. What do we know about freaque waves in the ocean and lakes and how do we know it? // Nat. Hazards Earth Syst. Sci. 2010. N. 10. P. 1-6.

25. Сергиенко А. Б. Цифровая обработка сигналов. СПб.: Питер, 2002. 608 с.

26. Hirt C. W., Nichols B. D. Volume of fluid method for the dynamics of free boundaries // Comp. Phys. 1981. V. 39, N. 1. P. 201-225.

27. Дорожко В. М. Динамическое воздействие "волны-убийцы" на контур морского судна // Мехатроника, автоматизация, управление. 2015. № 3. С. 209-216.

28. Флот рыбной промышленности. Справочник типовых судов. М.: Транспорт, 1990. 381 с.

29. Кулагин В. Д. Теория и устройство морских промысловых судов. Л., Судостроение, 1974. 440 с.


Review

For citations:


Dorozhko V.M. Stability of a Seagoing Vessel Contour to Capsizing by a Rogue Wave. Mekhatronika, Avtomatizatsiya, Upravlenie. 2015;16(12):852-860. (In Russ.) https://doi.org/10.17587/mau.16.852-860

Views: 463


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)