Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Research and Development of a Method for Forecasting of Rollout Distance of an Aircraft

https://doi.org/10.17587/mau.16.841-847

Abstract

Any aircraft mission includes a land movement phase. Such phases are carried out under control of a pilot. At this time the aircraft crew experiences high psychological stresses. Stressful conditions create prerequisites for improper or erroneous actions. Therefore, the human factor plays a decisive role in ensuring safety and accident free flights of the air transport. In order to improve the crews' situational awareness, the algorithmic methods for assessing of the current and predicting of the future movement of the aircraft were developed. The methods are based on the energy approach to the flight control. The well-known energy balance equation is generalized to the runway modes by adding a member, reflecting the absorption of energy to overcome the drag of the mechanical forces. The new member is presented in the following form: ∆ HE b= t1 t2 V kb dt , where kb is the normalized braking coefficient equal to the ratio of the total resistance forces from the chassis to the weight of an aircraft. Here HE (*) = E (*)/ mg is the specific energy. The extended equation ∆ HE =∆ HE eng+∆ HE D+ HE b+∆ HE w describes how to change the total energy of an aircraft throughout its trajectory, including the ahead segment. The length of this segment is calculated from the conditions of achievement of the required final energy state. In the braking mode the final state is determined by a known speed taxiing. The target braking distance is described by the following equation: Db =0,5 V t 2- Vtaksiin t 2 / gnx t . However, this forecast does not take into account the change in the braking forces on the ahead lying trajectory. Therefore, in order to improve the reliability of forecasting the method of algorithms' correction was offered. The correction coefficients are the functions of the mass, velocity and braking coefficient. These functions are approximated by the polynomials up to degree-4. The computer research stand was developed, including the mathematical model of Tupolev Tu-204. The deterministic and statistical tests within the range of the aircraft mass of 70-105 tons, approach speed of 200-220 km/h and friction coefficient of 0,3-0,75 were performed. The estimates of the accuracy of the forecast on the basis of the tests are presented.

About the Author

A. M. Shevchenko
V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences
Russian Federation


References

1. Rallo N. The European Regional Aviation Safety Group (RASG-EUR) // FSFI International Workshop, 15 May, 2012.

2. Rallo N. Runway safety: the big picture // ICAO Regional Runway Safety Seminar (RRSS). Moscow, 6-8 November, 2012.

3. Sharov V. Development of Overrun Prognosis System in Volga-Dnepr Airline // ICAO_Regional Runway Safety Seminar (RRSS). Moscow, 6-8 November, 2012.

4. Jarinov S. Role of the Regulator // ICAO_Regional Runway Safety Seminar (RRSS). Moscow, 6-8 November, 2012.

5. Шаров В. Д. Методика оценки вероятности выкатывания воздушных судов за пределы ВПП при посадке // Научный вестник МГТУ гражданской авиации. 2007. № 122.

6. Statistical Summary of Commercial Jet Airplane Accidents. Worldwide Operations 1959-2012. Boeing. August 2012. URL: http:// www.boelng.com/news/techlssues/pdf/statsum.pdf

7. Кофман В. Д., Полтавец В. А., Теймуразов Р. А. Сравнительный анализ безопасности полетов отечественных и зарубежных самолетов // Транспортная безопасность и технологии. 2005. № 4 (5).

8. Борисов В. Г., Павлов Б. В., Шевченко А. М. Средства информационной поддержки пилота в нештатных ситуациях // Матер. 7-й науч.-техн. конф. "Мехатроника, автоматизация, управление". СПб. ОАО "Концерн "ЦНИИ Электроприбор", 2010. С. 74-77.

9. Шевченко А. М., Павлов Б. В., Начинкина Г. Н. Метод прогнозирования взлета самолета при наличии высотных препятствий // Изв. Южного федерального ун-та. Техн. науки. 2012. № 3. С. 167-172.

10. Shevchenko A. M. Some Means for Informational Support of Airliner Pilot // 5th Int. Scientific Conf. on Physics and Control (Physcon 2011). Leon, Spain. Sept. 5-8, 2011. P. 1-5. URL: http://lib.physcon.ru/doc?id=78f90e41e746/

11. Kuznetsov A., Shevchenko A., Solonnikov Ju. The Methods of Forecasting Some Events During the Aircraft Takeoff and Landing // 19th IFAC Symposium on Automatic Control in Aerospace (ACA2013).Germany. 2013. P. 183-187.

12. Lambregts A. A. Vertical Flight Path and Speed Control Autopilot Design Using Total Energy Principles // AIAA Paper 83-2239CP. 1983. P. 559-569.

13. Kurdjukov A. P., Nachinkina G. N., Shevtchenko A. M. Energy approach to flight control // AIAA Conf. Navigation, Guidance & Control. AAIA Paper 98-4211. Boston. 1998.

14. Павлов Б. В., Шевченко А. М., Начинкина Г. Н. Энергетический подход и его использование для проектирования систем управления полетом // Актуальные проблемы авиационных и аэрокосмических систем. 2003. Вып. 2 (16), Т. 8. С. 24-43.


Review

For citations:


Shevchenko A.M. Research and Development of a Method for Forecasting of Rollout Distance of an Aircraft. Mekhatronika, Avtomatizatsiya, Upravlenie. 2015;16(12):841-847. (In Russ.) https://doi.org/10.17587/mau.16.841-847

Views: 474


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)