Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Neural Network Prediction of Events for Intelligent Robots

https://doi.org/10.17587/mau.16.836-840

Abstract

The traditional forecasting of events is based on a preliminary design of their models. Employment of such models as a part of the intelligent robots cannot take into account the whole variety of the situations, which may arise. It is desirable that an adequate model of events is formed by a robot itself. In the interests of intellectualization of the autonomous robots the task of predicting events without setting models of their development is considered. Objective is to increase the functionalities of fore-casting of the events with the changing laws of their development. In order to address this problem a new method for predicting is proposed. The method involves the use of a recurrent neural network with controlled synapses and with a layer structure in the form of a double spiral. The method is based on associative memorizing of the current and delayed signals, and extraction of the future events from the memory of the neural network. According to the method is not necessary to know in advance, in accordance with which law the observed events will develop. The development model of such events is formed by the dynamic neural network itself in the process of accumulation of its experience. The method makes it possible to predict the parallel events at various depths with a gradual improvement of the results. These results are the sliding multistep forecasts. Due to this the intelligent robots can qualitatively predict events and plan their responses. The simulation results, reflecting the peculiarities of such prediction, are presented. The recommendations for the use of the proposed method have been formulated.

About the Author

V. Yu. Osipov
St. Petersburg Institute for Informatics and Automation of RAS
Russian Federation


References

1. Добрынин Д. А., Карпов В. Э. Моделирование некоторых форм адаптивного поведения интеллектуальных роботов // Информационные технологии и вычислительные системы. 2006. № 2. С. 45-56.

2. Рабочая книга по прогнозированию. М.: Мысль, 1982. 430 с.

3. Haykin S. Neural Networks and Learning Machines. New-York: Prentice Hall, 2008. 936 p.

4. Galushkin A. I. Neural Networks Theory. Springer-Verlag Berlin Heidelberg, 2007. 396 p.

5. Осовский С. Нейронные сети для обработки информации: Пер. с польского И. Д. Рудницкого. М.: Финансы и статистика, 2002. 344 с.

6. Ghiassi M., Saidane H., Zimbra D. K. A dynamic artificial neural network model for forecasting time series events // International Journal of Forecasting. 2005. Vol. 21, Iss. 2. P. 341-362.

7. Осипов В. Ю. Нейронная сеть с прошедшим, настоящим и будущим временем // Информационно-управляющие системы. 2011. № 4. С. 30-33.

8. Осипов В. Ю. Рекуррентная нейронная сеть со структурой слоев в виде двойной спирали // Информационные технологии. 2014. № 7. С. 56-60.

9. Осипов В. Ю. Стирание устаревшей информации в ассоциативных интеллектуальных системах // Мехатроника, автоматизация, управление. 2012. № 3. С. 16-20.


Review

For citations:


Osipov V.Yu. Neural Network Prediction of Events for Intelligent Robots. Mekhatronika, Avtomatizatsiya, Upravlenie. 2015;16(12):836-840. (In Russ.) https://doi.org/10.17587/mau.16.836-840

Views: 615


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)