Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Speed Bigradient Method in the Control Problem of the Vibratory Gyroscope

https://doi.org/10.17587/mau.16.783-792

Abstract

The article deals with the problem of adaptive control of a single-axis vibratory gyroscope. In order to improve both the control quality of the vibratory gyroscope and the identifying properties of the adaption algorithm, an extension of the original system is proposed by adding additional integrators to the gyroscope inputs, i. e. enhancing of the astatism. On the other hand, smoothness of the electrostatic forces applied to the axes of a gyroscope is improved. Smooth control algorithms as well as algorithms of the sliding mode with a tuning surface for the gyroscope with integrator was designed by the speed bigradient method (SBGM). SBGM consists of three stages. At the first stage, an "ideal" virtual control for an output subsystem, which is the gyroscope, is designed. The "ideal" virtual control ensures achievement of the control goal for the output subsystem, assuming the object parameters are known. At the second stage, the unknown parameters are replaced with the tunable ones, and adaptation algorithm is designed. At the third stage, a deviation of the manifold, that is a difference between the input subsystem, which is an integrator of the output and virtual control, is selected. Control law ensuring the convergence of the system trajectories to the manifold is designed. The relevance of adding of the additional integrators to the inputs of the vibratory gyroscope; analysis of the robust properties of designed adaptive control algorithms with respect to the additive disturbances; comparative analysis of the convergence, accuracy, and presence of the identifying properties of the designed algorithms are presented. The theoretical results are proved by a computer simulation in MATLAB.

About the Authors

Yu. I. Myshlyayev
Bauman Moscow State Technical University, Kaluga Branch
Russian Federation


A. V. Finoshin
Bauman Moscow State Technical University, Kaluga Branch
Russian Federation


Tar Yar Myo
Bauman Moscow State Technical University, Kaluga Branch
Russian Federation


References

1. Бугров Д. И. Одноосный вибрационный гироскоп // Фундаментальная и прикладная математика. 2005. Т. 11. № 8. С. 149-163.

2. Acar C. and Shkel A. M. Micro-gyroscopes with dynamic disturbance rejection // International Conference On Modeling and Simulation of Microsystems, USA. 1999. P. 605-608.

3. Hameed S., Jagannathan. Adaptive force-balancing control of MEMS gyroscope with actuator limits // Proceedings of the 2004 American Control Conference. 2004. Vol. 2. P. 1862-1867.

4. Fei J., Batur C. A novel adaptive sliding mode control for MEMS gyroscope // Proc. of 47@th IEEE Conference on Decision and Control. 2007.

5. Мышляев Ю. И., Финошин А. В. Адаптивное управление одноосным вибрационным гироскопом // Тр. ФГУП "НПЦАП" "Системы и приборы управления". 2014. № 1. С. 78-89.

6. Мышляев Ю. И., Финошин А. В., Тар Яр Мьо. Адаптивное управление одноосным вибрационным гироскопом с интегратором // XII Всеросс. совещание по проблемам управления, Россия, Москва, Институт проблем управления имени В. А. Трапезникова РАН, 16-19 июня 2014 г. С. 2246-2256.

7. Мышляев Ю. И. Метод бискоростного градиента // Известия ТулГУ. Технические науки. Вып. 5. Ч. 1. Тула: Изд-во ТулГУ, 2011. С. 168-178.

8. Мышляев Ю. И. Алгоритмы управления линейными объектами в условиях параметрической неопределенности на основе настраиваемого скользящего режима // Мехатроника, автоматизация, управление. 2009. № 2. С. 11-16.

9. Myshlyayev Y. I., Finoshin A. V. Sliding mode with tuning surface in problem of synchronization of two-pendulum system motion, 11th IFAC International Workshop on Adaptation and Learning in Control and Signal Processing, University of Caen Basse-Normandie, Caen, France, July 3-5, 2013. P. 221-226.

10. Фрадков А. Л. Адаптивное управление в сложных системах. М.: Наука, 1990.

11. Мирошник И. В., Никифоров В. О., Фрадков А. Л. Нелинейное и адаптивное управление сложными динамическими системами. СПб.: Наука, 2000.


Review

For citations:


Myshlyayev Yu.I., Finoshin A.V., Tar Yar Myo  Speed Bigradient Method in the Control Problem of the Vibratory Gyroscope. Mekhatronika, Avtomatizatsiya, Upravlenie. 2015;16(11):783-792. (In Russ.) https://doi.org/10.17587/mau.16.783-792

Views: 393


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)