Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

An Approach to Inertial Navigation System-Aided Global Navigation Satellite System Carrier-Phase Positioning

https://doi.org/10.17587/mau.16.757-764

Abstract

Current systems of the carrier-phase-based positioning require the use of differential methods, employing simultaneous measurements on a base station. The main problem, which hinders the absolute phase measurements, is insufficient mutual synchronisation of the satellite and receiver clocks. This insufficient synchronisation results in unknown parameters which are difficult to determine using the stand-alone equipment: the integer cycles number N, the phase at the transmitter's antenna js and the initial phase of the receiver's reference generator jrint. The new method proposed in this paper allows estimation of the two latter parameters with the aid of information from an inertial system. The main idea of the proposed principle is that INS and carrier-phase measurements have different error structures. The paper shows that a residual between the INS and carrier-phase measurements under certain conditions has a periodic nature, and the corresponding error source - bias on a satellite antenna - can be tracked and eliminated. The second error is the phase bias in the internal receiver generator, which can be estimated by Kalman filter. The method proposed to resolve the integer ambiguity needs a dual-frequency reception. Although this approach theoretically allows an absolute positioning, it is still desirable to use any type of a wide-area differential correction, because certain influences of the error sources cannot be sufficiently eliminated to take advantage of the carrier-phase measurements over the code measurements. The system was simulated using the Matlab/Simulink software package.

About the Authors

P. A. Gorev
National University of Science and Technology "Moscow Institute of Steel and Alloys"; Research Institute of Precision Measurements
Russian Federation


V. G. Kostikov
National University of Science and Technology "Moscow Institute of Steel and Alloys"; Main Design Department of Almaz-Antey Air-Defence Concern
Russian Federation


References

1. Поваляев А. А. Спутниковые радионавигационные системы: время, показания часов, формирование измерений и определение относительных координат. М.: Радиотехника, 2008. 328 с.

2. Groves P. D. Principles of GNSS, Inertial and Multisensor Integrated Navigation Systems. Boston, London: Artech House, 2008. 518 р.

3. Дворкин В. В., Карутин С. Н., Глухов П. В. Анализ состояния и перспектив развития технологии высокоточного местоопределения по сигналам ГНСС // Радиотехника. 2011. № 3. С. 4-13.

4. Нагин И. А., Шатилов А. Ю. Алгоритм комплексирования НАП СРНС и автомобильных датчиков скоростей вращения колес // Радиотехника. 2012. № 6. С. 126-131.

5. Шатилов А. Ю., Нагин И. А. Тесно связанный алгоритм комплексирования НАП СРНС и многоцелевой ИНС // Радиотехника. 2012. № 6. С. 118-126.

6. Gao J. Development of a Precise GPS/INS/On-Board Vehicle Sensors Integrated Vehicular Positioning System: PhD Thesis. University of Calgary. 2007. 218 р.

7. Han S., Wang J. Integrated GPS/INS navigation system with dual-rate Kalman Filter // GPS Solutions. 2012. N. 3 (16). P. 389-404.

8. Langel S. E. et al. Tightly coaled GPS/INS integration for differential carrier phase navigation systems using decentralized estimation // Indian Wells: Position Location and Navigation Symposium (PLANS). 2010. P. 397-409.

9. Hide C. et al. Adaptive Kalman filtering algorithms for integrating GPS and low cost INS // Indian Wells: Position Location and Navigation Symposium, PLANS 2004. 2004. P. 227-233.

10. He X. et al. Analysis of INS Aided Signal Acquisition Based on Navigation Satellites Software Receivers // Zhangjiajie, Hunan: International Conference on Measuring Technology and Mechatronics Automation, ICMTMA '09. 2009. P. 277-280.

11. Zhu L. et al. Fast fine acquisition algorithm of GPS receiver aided by INS information // Journal of Systems Engineering and Electronics. 2011. N. 2 (22). P. 300-305.

12. Zhang Q. et al. Research on GPS signal ambiguity resolution aided by INS // Yantai: 3rd International Congress on Image and Signal Processing (CISP). 2010. Vol. 9. P. 4254-4257.

13. Wang M., Gao Y. An Investigation on GPS Receiver Initial Phase Bias and Its Determination // San Diego: Proc. of the 2007 National Technical Meeting of The Institute of Navigation. 2007. P. 873-880.

14. New Civil Signals [Electronic resource] / National Coordination Office for Space-Based Positioning, Navigation, and Timing. Washington, D. C. URL: http://www.gps.gov/systems/gps/modernization/civilsignals/

15. Горев П. А. Метод повышения точности определения координат подвижного объекта инерциальной навигационной системы // Научный вестник МГГУ. 2014. № 3 (48). С. 39-49.

16. ГЛОНАСС. Принципы построения и функционирования / Под ред. А. И. Перова, В. Н. Харисова. М.: Радиотехника, 2010. 800 с.

17. IGS Products. URL: http://igscb.jpl.nasa.gov/components/ prods.html


Review

For citations:


Gorev P.A., Kostikov V.G. An Approach to Inertial Navigation System-Aided Global Navigation Satellite System Carrier-Phase Positioning. Mekhatronika, Avtomatizatsiya, Upravlenie. 2015;16(11):757-764. (In Russ.) https://doi.org/10.17587/mau.16.757-764

Views: 406


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)