Мехатроника, автоматизация, управление

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Complete Pole Placement Method for Linear MIMO Systems

Полный текст:


A complete pole placement method for linear MIMO systems with the use of state feedback is presented. The method is based on specific decomposition of representation in the state space of the original MIMO system. The converted representation of the MIMO system contains explicit elements, changing of which with the help of the feedback, enables a specified complete placement of the closed-loop system's poles. The method does not require special solving of matrix equations (like Sylvester equations), which are expressed in the same form for both continuous and discrete cases of the MIMO system description, and does not place restrictions on the algebraic and geometric multiplicity of the specified poles.

Ключевые слова

Об авторах

V. Ryabchenko
Moscow State Technical University after N. E. Bauman

N. Zubov
Moscow State Technical University after N. E. Bauman

I. Sorokin
Moscow State Technical University after N. E. Bauman

A. Proletarskii
Moscow State Technical University after N. E. Bauman

Список литературы

1. Ackermann J. Sampled-data control systems: Analysis and synthesis, robust system design, Springer-Verlag, NY, 1985.

2. Astrom K., Wittenmark B. Computer Controlled Systems, Prentice-Hall, Inc., Engelwood Cliffs, NJ, 1984.

3. Bennett S. A History ofControl Engineering 1930-1955, IEE Control Engineering Series 47, Peter Peregrinus Ltd., London, UK, 1993.

4. Dorf R. C., Bishop R. H. Modern Control Systems, 7th Ed., MA, Addison-Wesley, 1995.

5. Kuo B. C. Automatic Control Systems, Englewood Cliffs, NJ, Prentice Hall, 7th Ed, 1995.

6. Leonov G. A., Shumafov M. M. Methods of stabilization of linear controlled-proxy systems, St. Petersburg, St. Petersburg University, 2005 (in Russian).

7. Misrikhanov M. Sh. Invariant multivariable control systems. Algebraic approach, Moscow, Nauka, 2007 (in Russian).

8. Mikrin E. A., Ryabchenko V. N., Zubov N. E. Matrix methods in the theory and practice of aircraft automatic control systems, Moscow, Bauman University, 2016 (in Russian).

9. Misrikhanov M. Sh., Ryabchenko V. N. The band formula for A. N. Krylov's problem, Automation and Remote Control, 2007, vol. 68, no. 12, pp. 2142-2157.

10. Perko L. Differential equations and dynamical systems, Springer, Berlin, 1991.

11. Polyak B. T., Shcherbakov P. S. Robust stability and control, Moscow, Nauka, 2002 (in Russian).

12. Trentelman H. L., Stoorvogel A. A., Hautus M. Control theory for linear systems, Springer, Berlin, 2001.

13. Wonham W. M. Linear multivariable control systems: a geometric approach, Springer, Berlin, 1979.

14. Kailath T. Linear Systems, Englewood Cliffs, NJ, Prentice Hall, 1980.

15. Kautsky J., Nichols N. K., Van Dooren P. Robust pole assignment in linear state feedback, Int J Control, 1985, vol. 41, no. 5, pp. 1129-1155.

16. Misrikhanov M. Sh., Ryabchenko V. N. Pole Placement in Large Dynamical Systems with Many Inputs and Outputs, Doklady Mathematics, 2011, vol. 84, no. 1, pp. 591-593.

17. Zubov N. E., Mikrin E. A., Misrikhanov M. Sh., Ryabchenko V. N. Modification of the exact pole placement method and its application for the control of spacecraft motion, Journal of Computer and Systems Sciences International, 2013, vol. 52, no. 2, pp. 279-292.

18. Bernstein D. S. Matrix mathematics, Princeton University Press, 2005.

19. Li P. Y. Advanced control systems design, University of Minnesota, 2012.

20. Girko V. L. Circular law, Theory Probab Appl, 1984, no. 29, pp. 694-706.

21. Matlab. User's guide, The MathWorks, Inc., 1994-2016.

Для цитирования:

., ., ., . . Мехатроника, автоматизация, управление. 2018;19(1):11-18.

For citation:

Ryabchenko V.N., Zubov N.E., Sorokin I.V., Proletarskii A.V. Complete Pole Placement Method for Linear MIMO Systems. Mekhatronika, Avtomatizatsiya, Upravlenie. 2018;19(1):11-18. (In Russ.)

Просмотров: 10

ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)