Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Neural Network Estimation of the Dynamics of the Automatic Optimization System

https://doi.org/10.17587/mau.16.659-663

Abstract

The topic of the article is a search engine for an automatic optimization of the nonlinear object of control with algorithm for search of the extremum of nonlinearity and storing of the extremum. The traditional methods of regulation realized on the basis of the theory of the linear and linearized systems cannot ensure the demanded quality of regulation of the technological parameters of many industrial facilities, which are inherently nonlinear. There is a need for solution to the traditional problems of control with the use of the new methods implemented in smart systems, in particular, the neural network methods. The aim of the work is to solve the problem of an approximate assessment of the transition processes with the use of a neural network of perseptronny type in coordinates, the exit time (z, t) of the control object, which gives a chance to construct an approximate assessment of the phase trajectory of the process in coordinates of the exit entrance (z, x) of the control object. For the solution of the problem of assessment of the dynamics of the exit of an object the neural network method is offered in the form of a three-layer network of perseptronny type with a function of activation of the sigmoidal type. Use of the sigmoidal function allows us to transfer from the binary exits of neurons to the analog ones. The unknown parameters of a network result from the solution of the nonlinear optimizing problem of a minimal total error. The signal of an error of the solution of a neural network is defined as a difference between the desirable and valid output signals in the discrete time points. Results of the computing experiment of calculation of the transition process of search for the extremum of nonlinearity by a neural network method show efficiency of the offered neural network method in comparison with the known numerical methods of the solution of the differential equations, differing in considerable simplicity and rather high precision due to the choice of the number of neurons in the hidden layer, and also considerable speed.

About the Authors

N. P. Demenkov
Bauman Moscow State Technical University
Russian Federation


I. A. Mochalov
Bauman Moscow State Technical University
Russian Federation


References

1. Бесекерский В. А., Попов Е. П. Теория систем автоматического управления. М.: Наука, 1975.

2. Растригин Л. А. Системы экстремального управления. М.: Наука, 1974.

3. Казакевич В. В., Родов А. Б. Системы автоматической оптимизации. М.: Энергия, 1977.

4. Методы робастного, нейро-нечеткого и адаптивного управления / Под ред. К. А. Пупкова. М.: Изд-во МГТУ им. Н. Э. Баумана, 2001.

5. Otadi M., Mosleh M. Numerical solution of quadratic Riccati differential equation by neural network // Mathematical sciences. 2011. Vol. 5, N. 3. P. 249-257.

6. Buckley J. J., Feuring T. Fuzzy differential equations // Fuzzy sets and systems. 2000. N. 11. P. 43-54.

7. Buckley J. J., Feuring T. Introduction to fuzzy partial differential equations // Fuzzy sets and systems. 1999. N. 5. P. 241-248.

8. Комарцова Л. Г., Максимов А. В. Нейрокомпьютеры. М.: Изд-во МГТУ им. Н. Э. Баумана, 2004.

9. Галушкин А. И. Нейросетевые технологии в перспективных суперЭВМ. Концепция развития высокопроизводительных вычислений на базе супернейрокомпьютеров (2012-2020 гг.) // Информационные технологии. 2013. № 9. 32 с.


Review

For citations:


Demenkov N.P., Mochalov I.A. Neural Network Estimation of the Dynamics of the Automatic Optimization System. Mekhatronika, Avtomatizatsiya, Upravlenie. 2015;16(10):659-663. (In Russ.) https://doi.org/10.17587/mau.16.659-663

Views: 435


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)