

Current State and Prospects of Development of Kinematic Schemes of 3D Printers
https://doi.org/10.17587/mau.26.547-555
Abstract
Nowadays, additive manufacturing or 3D printing technologies are very popular. The kinematic scheme of a 3D printer determines how the movement of motors will affect the movement of the working carriage relative to the product. This paper presents an analysis of different kinematic schemes of 3D printers. A comparative analysis of kinematic schemes was carried out, the results of the analysis of various sources are integrated, the conclusions obtained in the course of the work are substantiated. Abstraction and harmonization of descriptions and visual representations of kinematic schemes from classical solutions to new ones that remain within the prototype were made. On the basis of the obtained results a generalization has been carried out, allowing to draw conclusions about the tendencies of development of the scientific direction. Recommendations for the development of a generalized mathematical model of the mechanism of movement of the working tool are given. The practical significance of the work consists in improving the characteristics of devices and printing quality, as well as reducing production costs due to the optimization of design processes; in addition, the description of the mathematical model will accelerate the creation of digital twins, and the adaptation of devices to new technologies; also the results of the study can find application for training and development of personnel.
About the Authors
A. M. TrubitcynaRussian Federation
A. M. Trubitcyna, Master Student
St. Petersburg, 197101
K. Yu. Bodrov
Russian Federation
K. Yu. Bodrov, Laboratory Manager
St. Petersburg, 197101
N. D. Tolstoba
Russian Federation
N. D. Tolstoba, Сand.Tech. Sc, Associate Professor
St. Petersburg, 197101
References
1. Pham D. T., Gault R. S. A comparison of rapid prototyping technologies. Int. J. Mach. Tools Manuf., 1998, vol. 38, pp. 1257— 1287, available at: https://doi.org/10.1016/S0890-6955(97)00137-5.
2. Boulaala M., Elmessaoudi D., Buj-Corral I., El Mesbahi J., Ezbakhe O., Astito A., El Mrabet M., El Mesbahi A. Towards design of mechanical part and electronic control of multimaterial/multicolor fused deposition modeling 3D printing, The International Journal of Advanced Manufacturing Technology, 2020, vol. 110, pp. 45—55, available at: https://doi.org/10.1007/s00170-020-05847-0.
3. Kumar N., Jain P. K., Tandon P., Mohan Pandey P. 3D printing of flexible parts using EVA material, Materials Physics & Mechanics, 2018, vol. 3, pp. 2, available at: http://doi.org/10.18720/MPM.3722018_3
4. Park S. J., Lee J. E., Park J., Lee N. K., Son Y., Park S. H. High-temperature 3D printing of polyetheretherketone products: Perspective on industrial manufacturing applications of super engineering plastics, Materials & Design, 2021, vol. 211, 110163, available at: https://doi.org/10.1016/j.matdes.2021.110163.
5. Skrzypczak N. G., Tanikella N. G., Pearce J. M. Open source high-temperature RepRap for 3-D printing heat-sterilizable PPE and other applications, HardwareX, 2020, vol. 8, e00130, available at: https://doi.org/10.1016/j.ohx.2020.e00130.
6. Obi M. U., Pradel P., Sinclair M., Bibb R. A bibliometric analysis of research in design for additive manufacturing, Rapid Prototyping Journal, 2022, vol. 28, no. 5, pp. 967—987, available at: https://doi.org/10.1108/RPJ-11-2020-0291.
7. Kopets E., Karimov A., Scalera L., Butusov D. Estimating natural frequencies of Cartesian 3D printer based on kinematic scheme, Applied Sciences, 2022, vol. 12, no. 9, pp. 4514, available at: https://doi.org/10.3390/app12094514.
8. Avdeev A. R., Shvets A. A., Torubarov I. S. Investigation of kinematics of 3D printer print head moving systems, Proceedings of the 5th International Conference on Industrial Engineering (ICIE 2019), vol. I 5, Springer International Publishing, 2020, pp. 461—471, available at: https://doi.org/10.1007/978-3-030-22041-9_50.
9. Idà E., Nanetti F., Mottola G. An alternative parallel mechanism for horizontal positioning of a nozzle in an FDM 3D printer, Machines, 2022, vol. 10, no. 7, pp. 542, available at: https://doi.org/10.3390/machines10070542.
10. Cheng L. Seamless printing in fused — filament fabrication of additive manufacturing United States Patent US 2023/0012165 A1, 12 January, 2023 [website], available at: https://patents.google.com/patent/US20230012165A1/en (accessed 23.05.2024).
11. Vasquez J., Twigg-Smith H., Tran O'Leary J., Peek N. Jubilee: An extensible machine for multi-tool fabrication, Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 2020, pp. 1—13, available at: https://doi.org/10.1145/3313831.3376425.
12. Bessler N., Ogiermann D., Buchholz M. B., Santel A., Heidenreich J., Ahmmed R., Zaehres H., Brand-Saberi B. Nydus One Syringe Extruder (NOSE): A Prusa i3 3D printer conversion for bioprinting applications utilizing the FRESH-method, HardwareX, 2019, vol. 6, e00069, available at: https://doi.org/10.1016/j.ohx.2019.e00069.
13. Z da V., Belda K. Structure design and solution of kinematics of robot manipulator for 3D concrete printing, IEEE Trans. Autom. Sci. Eng., 2022, vol. 19, no. 4, pp. 3723—3734, available at: https://doi.org/10.1109/TASE.2021.3133138.
14. Clavel R. Device for the Movement and Positioning of an Element in Space. United States Patent US4976582A, 11 December 1990. [website], available at: https://patents.google.com/patent/US4976582A/en (accessed 23.05.2024).
15. Ahlers D., Wasserfall F., Hendrich N., Zhang J. 3D printing of nonplanar layers for smooth surface generation, 2019 IEEE 15th international conference on automation science and engineering (CASE), IEEE, 2019, pp. 1737—1743, available at: https://doi.org/10.1109/COASE.2019.8843116.
16. Trubitcyna A. M., Bodrov K. Yu., Kornev A. A. Deriving equations of motion and writing a script to operate a 3D printer with a double differential displacement-extrusion mechanism, Proceedings of the XI Congress of Young Scientists, 2022, vol. 3, pp. 58—65 (in Russian).
17. Ivashchenko M. I., Bodrov K. Yu. Organization and structure of the open laboratory of ideas, methods and practices. Work with initiative youth, The Eurasian Scientific Journal, 2015, vol. 7, no. 2, available at: http://naukovedenie.ru/PDF/127PVN315.pdf (free access) (in Russian).
18. Gokulnath A. R., Chandrakumar S., Sudhakar T. D. Open Source Automated SMD Pick and Place Machinem, Procedia computer science, 2018, vol. 133, pp. 872—878, available at: https://doi.org/10.1016/j.procs.2018.07.107.
19. Gunaraman S. V., Ashok B. C., Sandeep D., Bhandari M., Sanjay B. R. Design and Fabrication of A Low Cost, Table Top Gantry Type CNC Laser Cutting Machine, International Journal of Advanced Engineering and Management, 2018, vol. 3, no. 3, pp. 75—80.
20. Ivanov V. M. Simulation Model of the Cutting Speed Stabilization System for CNC Metal-Cutting Machine Tools, Mekhatronika, Avtomatizatsiya, Upravlenie, 2020, vol. 21, no. 2, pp. 110—116 (In Russian), available at: https://doi.org/10.17587/mau.21.110-116.
21. Baranov I. E., Nikolaev I. I., Soloviev M. A., Grigoriev S. A. Automation and Control of the Electrocatalytic Layers Formation Using a Two-Dimensional Coordinate Spraying Machine, Mekhatronika, Avtomatizatsiya, Upravlenie, 2022, vol. 23, no. 5, pp. 246—255 (In Russian), available at: https://doi.org/10.17587/mau.23.246-255.
22. Skawiński P., Siemiński P. The 3D Printer Farm—function and technology requirements and didactic use, Mechanik, 2017, vol. 90, no. 8—9, pp. 796—800, available at: https://doi.org/10.17814/mechanik.2017.8-9.117.
Review
For citations:
Trubitcyna A.M., Bodrov K.Yu., Tolstoba N.D. Current State and Prospects of Development of Kinematic Schemes of 3D Printers. Mekhatronika, Avtomatizatsiya, Upravlenie. 2025;26(10):547-555. https://doi.org/10.17587/mau.26.547-555