Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Identifiability and Adaptive Identification of Decentralized Systems

https://doi.org/10.17587/mau.26.347-356

Abstract

   The identification problem of decentralized systems (DS) is considered. The analysis shows that this issue has not been given sufficient attention. The increasing complexity of systems and a priori uncertainty require the development of approaches and methods. First, this concerns the parametric identifiability (PI) of decentralized systems. We propose the approach to the PI evaluation based on the constant excitation condition and considered relationships in the subsystems. The conditions for local structural and parametric identifiability by output and state space are obtained. Adaptive algorithms for decentralized system parametric identification have been synthesized. The exponential dissipativity of the adaptive system is proved. The exponential dissipativity of the adaptive system is proved. The obtained results are based on the application of Lyapunov vector functions. We study the influence of relationships in subsystems on the properties of parameter estimates. It is shown that an adaptive algorithm can be described as a dynamic matrix system if a functional constraint is imposed on the adaptive identification system (AIS). We consider a special case of such algorithms with a delayed argument and study the stability of an adaptive system. The influence of connections in the system on the DS identifiability is analyzed. The conditions of adaptive identification system exponential stability are obtained. We present results of mathematical modeling. The system comprising two subsystems is considered. Adaptive identification results are presented in the output space. The influence of subsystems is studied on estimates of subsystem model parameters. The structures reflecting the difference in the speed of parameter tuning of subsystem models are presented.

About the Author

N. N. Karabutov
MIREA — Russian Technological University
Russian Federation

Dr. Tech. Sc., Professor

119454; Moscow



References

1. Hua C., Guan X., Shi P. Decentralized robust model reference adaptive control for interconnected time-delay systems, Proceeding of the 2004 American Control Conference Boston, Massachusetts June 30 — July 2, 2004, pp. 4285—4289.

2. Yang Q., Zhu M., Jiang T. He J., Yuan J., Han J. Decentralized robust adaptive output feedback stabilization for interconnected nonlinear systems with uncertainties, Journal of control science and engineering, 2016, article ID 3656578:12.

3. Wu H. Decentralized adaptive robust control of uncertain large-scale non-linear dynamical systems with time-varying delays, Iet Control Theory and Applications, 2012, vol. 6(5), pp. 629—640.

4. Fan H., Han L., Wen C., Xu L. Decentralized adaptive output-feedback controller design for stochastic nonlinear interconnected systems, Automatica, 2012, vol. 48 (11), pp. 2866—2873.

5. Bronnikov A. M., Bukov V. N. Decentralized adaptive management with identification and model coordination in multicommunicated systems, 2010, 17 p., available at: https://www.researchgate.net/publication/273038561_Decentralizovannoe_adaptivnoe_upravlenie_s_identifikaciej_i_modelnoj_koordinaciej_v_mnogosvaznyh_sistemah.

6. Benitez V. H., Sanchez E. N., Loukianov A. G. Decentralized adaptive recurrent neural control structure, Engineering Applications of Artificial Intelligence, 2007, vol. 20, pp. 1125—1132.

7. Lamara A., Colin G., Lanusse P., Chamaillard Y., Charlet A. Decentralized robust control-system for a non-square MIMO system, the air-path of a turbocharged Diesel engine, 2012 Workshop on Engine and Powertrain Control, Simulation and Modeling. The International Federation of Automatic Control Rueil-Malmaison, France, October 23—25, 2012, pp. 130—137.

8. Nguyen T., Mukhopadhyay S. Identification and optimal control of large-scale systems using selective decentralization, 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 2016, pp. 000503-000508, doi: 10.1109/SMC.2016.7844289.

9. Gudi R. D., Rawlings J. B., Venkat A., Jabbar N. Identification for decentralized MPC, IFAC Proceedings Volumes, 2004, vol. 37, iss. 9, pp. 299—304.

10. Mao X., He J. Decentralized System Identification Method for Large-Scale Networks, 2022 American Control Conference (ACC), Atlanta, GA, USA, 2022, pp. 5173—5178, doi: 10.23919/ACC53348.2022.9867516.

11. Ioannou P. A. Decentralized adaptive control of interconnected systems, IEEE Transactions on automatic control, 1986, vol. ac-31 (4), pp. 291—298.

12. Zhong-Ping Jiang. Decentralized and adaptive nonlinear tracking of large-scale systems via output feedback, IEEE Transactions on Automatic Control, 2000, vol. 45, no. 11, pp. 2122—2128, doi: 10.1109/9.887638.

13. Li X.-J., Yan G.-H. Adaptive decentralized control for a class of interconnected nonlinear systems via backstepping approach and graph theory, Automatica, 2017, vol. 76, pp. 87—95.

14. Ljung L. System Identification: Theory for the User, Pearson, 1999.

15. Conrad J. R., Eisenberg M. C. Examining the impact of forcing function inputs on structural identifiability, arXiv:2407.02771v1 [q-bio.QM] 3 Jul 2024.

16. Weerts H. H. M., Dankers A. G., Van den Hof P. M. J. Identifiability in dynamic network identification. Preprints of the 17<sup>th</sup> IFAC Symposium on System Identification Beijing International Convention Center October. Beijing, China, 2015, pp. 19—21.

17. Verdière N. Identifiability in networks of nonlinear dynamical systems with linear and/or nonlinear couplings, Franklin Open, 2024, vol. 9, p. 100195, availavle at: doi: 10.1016/j.fraope.2024.100195

18. Anstett-Collin F., Denis-Vidal L., Mill rioux G. A priori identifiability : An overview on definitions and approaches, Annual Reviews in Control, 2020, vol. 50, pp. 139—149, doi. 10.1016/j.arcontrol.2020.10.006. hal-03003563.

19. Karabutov N. N. Introduction to structural identifiability of nonlinear systems, Мoscow, URSS/Lenand, 2021.

20. Karabutov N. Identification of decentralised control systems. Preprints-143582, availavle at: https://www.preprints.org/manuscript/202412.1808/v1, doi: 10.20944/preprints202412.1808.v1.

21. Karabutov N. N. On adaptive identification of systems having multiple nonlinearities, Russ. Technol. J., 2023, vol. 11(5), pp. 94—105.


Review

For citations:


Karabutov N.N. Identifiability and Adaptive Identification of Decentralized Systems. Mekhatronika, Avtomatizatsiya, Upravlenie. 2025;26(7):347-356. (In Russ.) https://doi.org/10.17587/mau.26.347-356

Views: 47


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)