Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Algorithm for Finite-Time Tracking Control of Quadcopter Motion Using the Lyapunov Function Method

https://doi.org/10.17587/mau.26.306-315

Abstract

This paper presents a technique for synthesizing a finite-time tracking control law, based on the Lyapunov function, for quadcopters. The dynamic model of quadcopters is an underactuated system with six degrees of freedom. To synthesize a control law for the system, a control architecture is first constructed, followed by the derivation of control laws for each subsystem. The convergence property of each control law is ensured through the use of a virtual system in the form of a strict-feedback system, which is employed to synthesize the control laws. The control law is derived via a diffeomorphism between the subsystem and the virtual system. The finite-time convergence property is guaranteed using a special Lyapunov function. Simulation results validate the effectiveness of the designed control laws.

About the Authors

C. X. Nguyen
Le Quy Don Technical University
Viet Nam

Ph.D., Lecturer of the Department "Automation and Computing Techniques" 

236 Hoang Quoc Viet Street, Hanoi 



P. Q. Pham
Bauman Moscow State Technical University
Russian Federation

Moscow, 105005 



References

1. Zhang L., Wang B., Peng W., Li C., Lu Z., Guo Y. Forest fire detection solution based on UAV aerial data, Int. J. Smart Home, 2015, vol. 9, no. 8, pp. 239—250.

2. Al-Kaff A., Madridano A., Campos S., García F., Martín D., Escalera A. Emergency support unmanned aerial vehicle for forest fire surveillance, Electronics, 2020, vol. 9, no. 2, p. 260.

3. Idrissi M., Salami M., Annaz F. A Review of Quadrotor Unmanned Aerial Vehicles: Applications, Architectural Design and Control Algorithms, J Intell Robot Syst, 2022, vol. 104, no. 22.

4. Abdelhay S., Zakriti A. Modeling of a Quadcopter Trajectory Tracking System Using PID Controller, The 12th International Conference Interdisciplinarity in Engineering, Procedia Manufacturing, 2019, no. 32, pp. 564—571.

5. Wang Y., Hou Y., Lai Zh., Cao L., Hong W., Wu D. An adaptive PID controller for path following of autonomous underwater vehicle based on Soft Actor—Critic, Ocean Engineering, 2024, vol. 307, pp. 118—171.

6. Ahmad F., Kumar P., Bhandari A., Patil P. P. Simulation of the Quadcopter Dynamics with LQR based Control, Materials Today: Proceedings, 2020, no. 24.

7. Duan Y., Xiang X., Liu Ch., Yang L. Double-loop LQR depth tracking control of underactuated AUV: Methodology and comparative experiments, SoftwareX, 2024, vol. 27, p. 101884.

8. Nonami K., Kendoul F., Suzuki S., Wang W., Nakazawa D. Autonomous Flying Robots, Tokyo, Springer, 2010.

9. Nimirich N. S., Filimonov N. B. Robust tracking motion control of the quadcopter based on the method of "deep" feedback, Journal of Advanced Research in Technical Science, 2024, iss. 43, 121 p.

10. Utkin V. I., Vadim I. Sliding mode control. Variable Structure Systems: From Principles to Implementation, IET Control Engineering Series, IET, Stevenage, 2004, vol. 66.

11. Eltayeb A., Rahmat M. F., Basri M. A. M. Sliding mode control design for the attitude and altitude of the quadrotor uav, Int. J. Smart Sens. Intell. Syst., 2020, vol. 13, no. 1, pp. 1—13.

12. Bouadi H., Bouchoucha M., Tadjine M. Sliding Mode Control based on Backstepping Approach for an UAV Type-Quadrotor, World Acad. Sci. Eng. Technol. Int. J. Mech. Mechatron. Eng., 2007.

13. Silva A. L., Santos D. A. Fast nonsingular terminal sliding mode flight control for multirotor aerial vehicles, IEEE Trans. Aerosp. Electron. Syst., 2020, vol. 56, no. 6, pp. 4288—4299.

14. Hassani H., Mansouri A., Ahaitouf A. Robust trajectory tracking control of an uncertain quadrotor via a novel adaptive nonsingular sliding mode control, Arab. J. Sci. Eng., 2023, pp. 1—25.

15. Belinskaya Yu. S., Chetverikov V. N. Control of a fourrotor helicopter, Science and Education, 2012, no. 5, pp. 157—171 (in Russian).

16. Filimonov A. B., Filimonov N. B. Methods of "flexible" trajectories in the tasks of terminal control of aircraft vertical maneuvers. Ch. 2, Problems of control of complex dynamic objects of aviation and space technology, Мoscow, Machinostroenie, 2015, pp. 51—110 (in Russian).

17. Filimonov N. B., Nikonenko T. M. Computer analysis of the degeneration effect at the end time process terminal control of aircraft, Journal of Advanced Research in Technical Science, 2020, iss. 19, pp. 43—50 (in Russian).

18. Filimonov N. B., Nikonenko T. M., Fomichev V. A. Algorithm for controlling the alignment of landing maneuver of aircraft by the method of "flexible" polynomial trajectories, Journal of Advanced Research in Technical Science, 2021, iss. 25, pp. 43—49 (in Russian).

19. Khalil H. Nonlinear Systems. Prentice-Hall, Englewood Cliffs, NJ, USA, 2003.

20. Basri M. Trajectory tracking control of autonomous quadrotor helicopter using robust neural adaptive backstepping approach, Journal of Aerospace Engineering, 2018, no. 31, pp. 04017091.

21. Zou Y., Meng Z. Immersion and invariance-based adaptive controller for quadrotor systems, IEEE Trans. Syst., Man, Cybern., Syst., 2018, no. 49, pp. 2288—2297.

22. Huang Y., Xue W. Active disturbance rejection control: Methodology and theoretical analysis, ISA Trans., 2014, no. 53, pp. 963—976.

23. Aboudonia A., El-Badawy A., Rashad R. Active anti-disturbance control of a quadrotor unmanned aerial vehicle using the command filtering backstepping approach, Nonlinear Dyn., 2017, no. 90.

24. Saibi A., Boushaki R., Belaidi H. Backstepping Control of Drone, Eng. Proc., 2022, no. 14, p. 4.

25. Yu J., Shi P., Zhao L. Finite-time command filtered backstepping control for a class of nonlinear systems, Automatica, 2018, no. 92, pp. 173—180.

26. Arif A., Wang H., Castaneda H., Wang Y. Finite-Time Tracking of Moving Platform with Single Camera for Quadrotor Autonomous Landing, IEEE Transactions on Circuits and Systems I: Regular Papers 70, 2023, pp. 2573—2586.

27. Egupov N. D., Pupkov K. A. Ed. Methods of classical and modern theory of automatic control, Vol. 5, Bauman Moscow State Technical University, 2025 (in Russian).

28. Nguyen C. X., Phan H. Ng., Hoang L. D., Tran H. Ng. The design of a quasi-time optimal cascade controller for ball and beam system, IOP Conf. Series: Materials Science and Engineering, 2021, no. 1029, p. 012020.

29. Chiem N. X., Hai P. N., Long H. D., Khoa T. D., Le M. K., Thuy X. P. Building quasi-time-optimal control laws for ball and beam system, 2019 3rd International Conference on Recent Advances in Signal Processing, Telecommunications & Computing (SigTelCom), 2019.

30. Chiem N. X., Hai N. P. Design controler of the quasitime optimization approach for stabilizing and trajectory tracking of inverted pendulum, XIV International Scientific-Technical Conference "Dynamic of Technical Systems" (DTS-2018), MATER. Web Conf. 2018, vol. 226 (in Russian).

31. Barbashin E. A. Introduction to the Theory of Stability, Moscow, Nauka, 1967, 223 p. (in Russian).

32. Yu J., Shi P., Zhao L. Finite-time command filtered backstepping control for a class of nonlinear systems. Automatica 92, 2018, 173—180.

33. Zuo Z., Tie L. Distributed robust finite-time nonlinear consensus protocols for multi-agent systems, Int. J. Syst. Sci., 2016, vol. 47, no. 6, pp. 1366—1375.

34. Zenkevich S. L., Galustyan N. K. Algorithm for Quadrocopter Trajectory Control and Flight Modeling, Mekhatronika, Avtomatizatsiya, Upravlenie, 2015, vol. 16, no. 8, pp. 530—535 (in Russian).

35. Shavin M., Pritykin D. Tilt-Rotor Quadrotor Control System Design and Mobile Object Tracking, Mekhatronika, Avtomatizatsiya, Upravlenie, 2019, vol. 20, no. 10, pp. 629—639 (in Russian).

36. Kolesnikov A. A. Synergetics control theory, Moscow, Energoatomizdat, 1994, 343 p. (in Russian).

37. Kim D. P. Theory of automatic control. Multidimensional, nonlinear, optimal and adaptive systems, vol. 2, Moscow, FIZMATLIT, 2004,464 p. (in Russian).


Review

For citations:


Nguyen C., Pham P. Algorithm for Finite-Time Tracking Control of Quadcopter Motion Using the Lyapunov Function Method. Mekhatronika, Avtomatizatsiya, Upravlenie. 2025;26(6):306-315. https://doi.org/10.17587/mau.26.306-315

Views: 129


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)