

Optimal Control of the Movement of a Group of Unmanned Vehicles
https://doi.org/10.17587/mau.26.147-154
Abstract
The article presents an algorithm for controlling a group of land-based autonomous vehicles. Research into the field of controlling autonomous ground vehicles is actively progressing. А separate challenging scientific and technical issue is the development of algorithms to manage a group of vehicles while maintaining optimal solutions. Despite the abundance of works on using unmanned vehicles in urban settings, algorithms are also under study that operate on rough terrain while solving, for instance, cargo delivery missions in hard-to-access areas. In this paper, the issue of driving an autonomous vehicle in a deterministic setting is addressed. To resolve the two-point issue arising from the maximum principle, the algorithm developed by Krylov and Chernousko has been employed. The difficulty in applying it for real-time control has been demonstrated. An algorithm incorporating a predictive model has been used to implement the concept of " flexible trajectories". The results of the numerical simulation are presented, demonstrating the benefits of this algorithm. Group movement of unmanned ground vehicles was implemented using a "master-slave" approach, where the movement of a slave control object follows a trajectory aligned with the movement of the master. The results of the numerical modeling show the potential for using the proposed algorithm to manage a group of autonomous vehicles under various starting and ending conditions. The algorithm proved successful in the presence of a restricted area for the controlled vehicle. Possibility of simultaneous operation of multiple guided autonomous vehicles is demonstrated.
About the Authors
S. А. KabanovRussian Federation
Kabanov S. A., Ph.D., Dr. Sci., Professor
Saint-Petersburg, 190005
F. V. Mitin
Russian Federation
F. V. Mitin
Saint-Petersburg, 190005
References
1. Tyulenev I. D., Filimonov N. B. Automatic parking cintrol of an unmanned car dased on reinforcement machine learning. High-performance computing systems and technologies, 2023, vol. 7, no. 1, pp. 159—165 (in Russian).
2. Yusupov D. T. Analytical review of approaches to control over longitudinal and lateral dynamics of an autonomous vehicle. Trudy NAMI, 2023, vol. 1, pp. 82—90 (in Russian).
3. Ao X. et al. Road Recognition and Stability Control for Unmanned Ground Vehicles on Complex Terrain. IEEE Access, 2023, vol. 11, pp. 77689—77702.
4. Ren W., Beard R. W., Atkins E. M. Information consensus in multivehicle cooperative control. IEEE Control Systems, 2007, vol. 27, no. 2, pp. 71—82.
5. Giulietti F., Pollini L., Innocenti M. Autonomous formation flight. IEEE Control Systems, 2000, vol. 20, pp. 34—44.
6. Kabanov D. S., Krasheninnikov В. A. Vehicle trajectory control using a sequential optimization algorithm. Izv. VUZov. Priborostroenie, 2008, vol. 51, no. 10, pp. 21—24 (in Russian).
7. Evdokimenkov V. N., Krasilshchikov M. N., Orkin S. D. Upravlenie smeshannymi gruppami pilotiruemyh i bespilotnyh letatel’nyh apparatov v usloviyah edinogo informacionno-upravlyayushchego polya. M.: Izd. MAI, 2015, 271 p. (in Russian)
8. Merzhanov A. A., Rudnev А. S. Unmanned vehicle hardware, International Journal of Humanities and Natural Sciences, 2024, vol. 1—2, no 88, pp. 172—175 (in Russian).
9. Erukov S. V. Perspektivy razvitiya geodezii kartografii i navigacii. Velikie reki 2017: trudy nauchnogo kongressa 19-go Mezhdunarodnogo nauchno-promyshlennogo foruma: v 3 tomah, Nizhnij Novgorod, 16—19 maya 2017 goda / Nizhegorodskij gosudarstvennyj arhitekturno-stroitelnyj universitet. Tom 1. Nizhnij Novgorod: Nizhegorodskij gosudarstvennyj arhitekturno-stroitel’nyj universitet, 2017, pp. 381—386. (in Russian).
10. Kim S. W., Gwon G. P., Choi S. T., Kang S. N., Shin M. O., Yoo I. S., Lee E. D., Seo S. W. Multiple vehicle driving control for traffic flow efficiency, IEEE Intelligent Vehicles Symposium. 2012.
11. B. van Arem, C. J. G. van Driel, R. Visser. The impact of cooperative adaptive cruise control on traffic-flow characteristics. IEEE Trans. Intell.Transp. Syst, 2006, vol. 7, no. 4, pp. 429—436.
12. Hattori Y., Ono E., Hosoe S. Optimum Vehicle Trajectory Control for Obstacle Avoidance Problem. Mechatronics, IEEE ASME Transactions, 2006, vol. 11, no. 5, pp. 507—512.
13. Lee S. KardarasG. Collision-free path planning with neural networks, Proceedings of International Conference on Robotics and Automation, Albuquerque, NM, USA, 1997, vol. 4, pp. 3565—3570.
14. Jia W., Xiao-Bei W., Zhi-Liang X. Decentralized Formation Control and Obstacles Avoidance Based on Potential Field Method, International Conference on Machine Learning and Cybernetics, Dalian, China, 2006, pp. 803—808.
15. Sisto M. Dongbing G. А Fuzzy Leader-Follower Approach to Formation Control of Multiple Mobile Vehicles, IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 2006, pp. 2515—2520.
16. Panov А. I. Simultaneous learnong and planning in a hierarchical control system for a cognitive agent, Automation and Remote Control, 2022, vol. 83, no. 6, pp. 869—663 (in Russian).
17. Jiao J., Trentelman H. L., Camlibel M. K. А Suboptimality Approach to Distributed Linear Quadratic Optimal Control, IEEE Transactions on Automatic Control, 2020, vol. 65, no. 3, pp. 1218—1225.
18. Jiao J., Trentelman H. L., Camlibel M. K. Distributed Linear Quadratic Optimal Control: Compute Locally and Act Globally, IEEE Control Systems Letters, 2020, vol. 4, no. 1, pp. 67—72.
19. Batenko А. P. Upravlenie konechnym sostoyaniem dvizhushchihsya ob’ektov. M.: Sov. radio, 1977. 256 p. (in Russian).
20. Kabanov S. A., Mitin F. V. Development of an Optimal Control Algorithm for the Course Movement of an Unmanned Vehicle. Mekhatronika, Avtomatizatsiya, Upravlenie, 2023, vol. 24, no 12, pp. 627—633 (in Russian).
21. Teryaev E. D., Filimonov A. B., Filimonov N. B., Petrin K. V. The concept of "flexible kinematic trajectories" in the problem of terminal control of moving objects. Mekhatronika, Avtomatizatsiya, Upravlenie, 2011, no. 12, pp. 7—15 (in Russian).
22. Kabanov S. A., Kabanov D. S., Mitin F. V. Optimization of the course movement of an unmanned vehicle in the presence of obstacles and disturbances, Mekhatronika, Avtomatizatsiya, Upravlenie, 2023, vol. 24, no. 2, pp. 93—100 (in Russian).
23. Krasovskij A. A., Bukov V. N., SHendrik V. V. Universal’nye algoritmy optimal’nogo upravleniya nepreryvnymi processami. M.: Nauka, 1977. 272 p. (in Russian).
24. Krylov I. A., CHernousko F. L. Algoritm metoda posledovatel’nyh priblizhenij dlya zadach optimal’nogo upravleniya, J. vychisl. matem. i matem. Fiz., 1972, vol. 12, no. 1, pp. 14—34 (in Russian).
25. Krasovskij А. A. Algorithmic foundations of optimal adaptive controllers of a new class, Automation and Remote Control, 1995, no. 6, pp. 104—116 (in Russian).
26. Kabanov S. A., Kabanov D. S. Zadachi upravleniya s optimizaciej parametrov prognoziruyushchih modelej. SPb, Izd-vo Balt. gos. tekhn. un-ta. 2017. 110 p. (in Russian).
27. Kabanov S. A. Optimization of system dynamics under the action of disturbances, Moscow, FISMATLIT, 2008, 200 p. (in Russian).
28. Litvinov А. S. Vehicle handling and stability, Moscow, Mashinostroenie, 1971. 417 p. (in Russian).
29. Handbook on the theory of automatic control. Pod red. А. A. Krasovskogo, Moscow, Nauka, 1987, 712 p. (in Russian).
Review
For citations:
Kabanov S.А., Mitin F.V. Optimal Control of the Movement of a Group of Unmanned Vehicles. Mekhatronika, Avtomatizatsiya, Upravlenie. 2025;26(3):147-154. (In Russ.) https://doi.org/10.17587/mau.26.147-154