

Evaluation of the Reliability of Empirical Mathematical Models of Dynamic Systems Using Input Signal Shift Method
https://doi.org/10.17587/mau.26.111-118
Abstract
An algorithm is proposed that makes it possible to effectively detect the presence of correlated interference in experimental data used for parametric identification. The main problem leading to such interference is structural inconsistencies between models and real objects. Establishing the presence of correlated interference opens up opportunities for expanding identification tools. In this paper, the identification of correlated interference using the parametric identification method was carried out, while using a modified Newton method to minimize the objective functional. The results obtained from the numerical example demonstrate the effectiveness of the proposed method in detecting correlated interference, and also indicate that the values of the criteria contain information about the magnitude of the estimation errors. The results obtained in this scientific research work can be useful for further developments in the field of parametric identification and signal processing.
About the Authors
O. N. KorsunRussian Federation
O. N. Korsun, Dr. Sc. (Eng.), Professor, Head of the Scientific and Educational Center
Moscow, 125319
Moscow, 125993
M. H. Om
Russian Federation
Moung Htang Om, Сand. Tech. Sc, Post-doctoral Candidate
Moscow, 125319
References
1. Klein V., Morelli E. A. Aircraft System Identification: Theory and Practice, Reston, AIAA, 2006, 499 р.
2. Korsun O. N., Poplavsky B. K. Approaches for Flight Tests Aircraft Parameter Identification, 29th Congress of the International Council of the Aeronautical Sciences, ICAS 2014, ICAS 2014 CD-ROM PROCEEDINGS,1804, Bonn, 2014.
3. Hale L. E., Patil M., Roy Ch. J. Aerodynamic Parameter Identification and Uncertainty Quantification for Small Unmanned Aircraft, AIAA 2015-1538, Session: Advances in UAS Technologies II, 2015, available at: https://doi.org/10.2514/6.2015-1538.
4. Bucharles A., Comer C., Hardier G., Jacquier B., Janot A., Le Moing T., Siren C., Toussaint C., Vacher P. An Overview of Relevant Issues for Aircraft Model Identification, Aerospace Lab, 2012, vol. 4, pp. 1—21 <hal-01183676>.
5. Tischler M. B. System identification methods for aircraft flight control development and validation, Technical Memorandum (TM), Aeroflightdynamics Directorate, U. S. Army ATCOM, Ames Research Center, Moffett Field, California, 1995, NASA-TM-110369.
6. Hällqvist R., Eek M., Brown R., Kraus P. Methods for automating model validation: steady-state identification applied on gripen fighter environmental control system measurements, 30th Congress of the international council of the aeronautical sciences, 2016.
7. Ghoreyshi M., Jirasek A., Seidel J. Computational validation and system identification modeling for stability and control predictions, The Aeronautical Journal, 2023, vol. 127, no. 1311, pp. 831—851, doi: 10.1017/aer.2022.94.
8. Battipede M., Cassaro M., Gili P., Gunetti P. Modeling and validation of aircraft mathematical models for the development of an innovative Flight Management System, CEAS 2011 The International Conference of the European Aerospace Societies, Venezia, 2011, pp. 1—10.
9. Dorobantu A., Balas G. J., Georgiou T. T. Validating aircraft models in the gap metric, Journal of Aircraft, 2014, vol. 51, no. 6, pp. 1665—1672, available at: https://doi.org/10.2514/1.C032580.
10. Hu H. W., Kao Н. Model Validation of an Ultralight Aircraft using Experimental Modal Analysis, Journal of Aeronautics, Astronautics and Aviation, 2009, Series А, vol. 41, no. 4, pp. 271—281, available at: https://doi.org/10.6125/JoAAA.200912_41(4).08.
11. Carlsson M. Methods for Early Model Validation, Ph.D. dissertation, Linköping, Linköping University, 2013, 118 p.
12. Eyre Ch., Brierley В. Performance Model Validation For Long-Endurance Unmanned Aircraft Using Mach VS. CL Test Method, 47th Annual International Symposium of the Society of Flight Test Engineers 2016, 2016, pp. 125—134.
13. Dorobantu A., Seiler P. J., Balas G. J. Validating uncertain aircraft simulation models using flight test data, AIAA Atmospheric Flight Mechanics (AFM) Conference, Boston, MA, United States, 2013.
14. Meister J., Schacher S., Wunderli J.-M., Empa В. Sc. Validation of three aircraft noise calculation models, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Dubendorf, Switzerland.
15. Giladi R. Munachi E. Validating Aircraft Noise Models, Proceedings 2020, vol. 59,no. 12, available at: https://doi.org/10.3390/proceedings2020059012.
16. Grauer J. A., Morelli E. A. Parameter Uncertainty for Aircraft Aerodynamic Modeling using Recursive Least Squares, AIAA Atmospheric Flight Mechanics Conference, 2016, available at: https://doi.org/10.2514/6.2016-2009.
17. Orellana R., Carvajal R., Escárate P., Agüero J. C. On the Uncertainty Identification for Linear Dynamic Systems Using Stochastic Embedding Approach with Gaussian Mixture Models, Sensors, 2021, vol. 21, no. 11, pp. 3837, available at: https://doi.org/10.3390/s21113837.
18. Hale L. E. Aerodynamic Uncertainty Quantification and Estimation of Uncertainty Quantified Performance of Unmanned Aircraft Using Non-Deterministic Simulations, Ph.D. dissertation: Virginia Polytechnic Institute and State University, Virginia, 2016, 111 p.
19. Van Der Merwe R., Wan E. A. The Unscented Particle Filter, Advances in Neural Information Processing Systems, 2001, vol. 14.
20. Korsun O. N., Om M. H. The practical rules for aircraft parameters identification based on flight test data, Metascience in Aerospace, 2024, vol. 1, no. 1, pp. 53—65, doi: 10.3934/mina.2024003.
21. Gonzalez R. C., Cacace J. Identification of Aircraft Dynamics with Correlated Noise, Journal of Aircraft, 2018.
22. Jategaonkar R. V. Identification of the aircraft system: a time domain meth-odology, Reston, American Institute of Aeronautics and Astronautics, 2006.
Review
For citations:
Korsun O.N., Om M.H. Evaluation of the Reliability of Empirical Mathematical Models of Dynamic Systems Using Input Signal Shift Method. Mekhatronika, Avtomatizatsiya, Upravlenie. 2025;26(3):111-118. https://doi.org/10.17587/mau.26.111-118