Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Identifi cation of Interaction Parameters of Underwater Manipulator Links with a Viscous Medium for Precise Automatic Execution of Manipulation Operations. Part 1

https://doi.org/10.17587/mau.26.98-108

Abstract

The paper solves the problem of identifying the features of the interaction of underwater manipulators (UM) links, which autonomous underwater vehicles (AUV) are equipped with, with a viscous medium. It is shown that for precise control of the UM, viscous friction, as well as the added masses and moments of inertia of the UM links during its movement must be taken into account as correctly as possible. The procedure for identifying the parameters of interaction between a moving UM and a viscous medium is carried out before starting technological operations near work sites. These parameters are further used in the calculation of force and torque effects from the moving UM on the AUV body for its high-precision stabilization in the hover mode over the objects of work, as well as for the implementation of feedbacks of synthesized positional-force UM control systems that ensure automatic execution of underwater contact technological operations. In the first part of the article a dynamic model of UM, based on recurrent equations for soving the inverse problem of dynamics, is presented in the form of linear regression. In this model unknown parameters enter linearly into the equations of generalized forces (moments) acting in the joints of UM. This type of UM model allows the identification of all unknown parameters using a linear Kalman filter. The results of the study of the complete mathematical model of AUV with UM, performed in the second part of the article, confirmed the operability and high efficiency of the proposed method for identifying the parameters of the interaction of UM units with a viscous medium

About the Authors

V. F. Filaretov
Institute of Automation and Control Processes FEB RAS
Russian Federation

Filaretov Vladimir F., Dr. of Sci., Professor, Head of Laboratory

Vladivostok, 690941



A. V. Zuev
Institute of Automation and Control Processes FEB RAS; Institute of Marine Technology Problems FEB RAS; Far Eastern Federal University
Russian Federation

Vladivostok, 690941;  Vladivostok, 690950; Vladivostok, 690950



A. A. Timoshenko
Institute of Marine Technology Problems FEB RAS
Russian Federation

Vladivostok, 690950



References

1. Griffiths G. Technology and Applications of Autonomous Underwater Vehicles, CRC Press, 2003, 368 p.

2. Inzartsev A. V., Kiselev L. V., Kostenko V. V., Matvienko Yu. V., Pavin A. M., Scherbatyuk А. F. Underwater robotic complexes: systems, technologies, applications, Vladivostok, IPMT DVO RAN, 2018, 368 p. (in Russian).

3. Ehlers F. Autonomous Underwater Vehicles: Design and practice, IET Digital Library, 2020, 592 p.

4. Antonelli G. Underwater Robots, Springer International Publishing Switzerland, 2014, 279 p.

5. Ribas D., Palomeras N., Ridao P., Carreras M., Mallios А. Girona 500 AUV: From Survey to Intervention, IEEE/ASME Transactions on Mechatronics, 2012, vol. 17, no. 1, pp. 46—53.

6. Zuev A. V., Filaretov V. F., Timoshenko A. A. А method of position force control of an autonomous uninhabited underwater vehicle with a multi-degree manipulator, Patent of the Russian Federation no. 2799176, The bulletin no.19 from 04.07.2023 (in Russian)

7. Filaretov V., Yukhimets D. Synthesis method of control system for spatial motion of autonomous underwater vehicle, International Journal of Industrial Engineering and Management, 2012, vol. 3, no. 3, pp. 133—141.

8. Zuev A. V., Filaretov V. F. Features of the creation of combined positional power control systems for manipulators. Izvestiya Rossiyskoy Akademii Nauk. Teoriya i Sistemy Upravleniya, 2009, no. 1, pp. 154—162 (in Russian).

9. Filaretov V. F., Zuev A. V., Timoshenko А. A. Features of performing technological operations using autonomous uninhabited underwater vehicles equipped with multi-link manipulators, Vestnik DVO RAN, 2024, no. 3. pp. 54—64 (in Russian).

10. Filaretov V. F., Yukhimets D. A., Mursalimov E. Sh. Method of identification of parameters of the mathematical model of the underwater vehicle, Mekhatronika, Avtomatizatsia, Upravlenie, 2012, no. 10, pp. 64—70 (in Russian).

11. Potapov A. P., Galyaev I. A., Galyaev А. A. On one task of identifying a model of an uninhabited underwater vehicle, Mekhatronika, Avtomatizatsia, Upravlenie, 2024, vol. 25, no. 3, pp. 132—141 (in Russian).

12. Loytsyanskiy L. Mechanics of liquid and gas, Ripol klassik, 1950, 676 p. (in Russian).

13. Newman J. N. Marine hydrodynamics, The MIT press, 2018, 448 p.

14. Klenov A. I., Vetchanin E. V., Kilin А. A. Experimental determination of added masses of the body by towing method, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2015, vol. 25, no. 4, pp. 568—582 (in Russian).

15. Javanmard E., Mansoorzadeh Sh., Javad A. M. А new CFD method for determination of translational added mass coefficients of an underwater vehicle, Ocean Engineering, 2020, vol. 215, pp. 1—9.

16. Tang S., Ura T., Nakatani T., Thornton B., Jiang T. Estimation of the hydrodynamic coefficients of the complex-shaped autonomous underwater vehicle TUNA-SAND, J. Mar. Sci. Technol., 2009, vol. 14, pp. 373—386.

17. Kolyubin S. A. Dynamics of robotic systems, Saint-Petersburg, Sankt-Peterburgskiy natsionalnyy issledovatelskiy universitet informatsionnyh tekhnologiy, mekhaniki i optiki, 2017, 117 p. (in Russian)

18. McMillan S., Orin D. E., McGhee R. B. Efficient dynamic simulation of an unmanned underwater vehicle with a manipulator, Proc. of the International Conference on Robotics and Automation, 1994, pp. 1133—l140.

19. Pantov E. N., Mahin E. E., Sheremetov В. B. Fundamentals of the theory of motion of underwater vehicles, Leningrad, Sudostroenie, 1973, 209 p. (in Russian).

20. Fossen T. I. Guidance and control of ocean vehicles, Wiley, 1994, 494 p.

21. Filaretov V. F. Konoplin А. Yu. The system of automatic stabilization of the underwater vehicle in hover mode with the multi-link manipulator operating. Part 1, Mekhatronika, Avtomatizatsia, Upravlenie, 2014, no. 6, pp. 53—56 (in Russian).

22. Filaretov V. F., Alekseev Yu. K., Lebedev А. V. Underwater robot control systems (Sistemy upravleniya podvodnymi robotami), Moscow, Kruglyy god, 2001, 288 p. (in Russian).

23. Zuev A. V., Zhirabok A. N., Filaretov V. F., Protsenko А. A. Identification of defects in non-stationary systems based on sliding observers, Mekhatronika, Avtomatizatsia, Upravlenie, 2021, vol. 22, no. 12, pp. 625—633 (in Russian).

24. Kreyg D. D. Introduction to Robotics: Mechanics and Control (Vvedenie v robototekhniku: mekhanika i upravlenie), Izhevsk, I zhevskiy institut kompyuternyh issledovaniy, 2013, 564 p. (in Russian).

25. Korn G., Korn T. Handbook of Mathematics for researchers and engineers, 1974, 832 p. (in Russian).

26. Korotkin А. I. Added masses of the vessel: Handbook (Prisoedinennye massy sudna: Spravochnik), Leningrad, Sudostroenie, 1986, 312 p. (in Russian).


Review

For citations:


Filaretov V.F., Zuev A.V., Timoshenko A.A. Identifi cation of Interaction Parameters of Underwater Manipulator Links with a Viscous Medium for Precise Automatic Execution of Manipulation Operations. Part 1. Mekhatronika, Avtomatizatsiya, Upravlenie. 2025;26(2):98-108. (In Russ.) https://doi.org/10.17587/mau.26.98-108

Views: 129


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)