

Predictive Temperature Control of Steel Strip During Hot-Dip Galvanizing Using Thermal Process Model
https://doi.org/10.17587/mau.26.84-97
Abstract
The paper proposes a system for model predictive temperature control of steel strip in the galvanized sheet metal production. Based on a review of proposals for predictive strip temperature control, we show that one of the main problems is the lack of reliable information about the current temperature state of the heat treatment section, since the temperature of the workspace is controlled locally at individual points. Taking this into account, the proposed system is based on the use of generalized estimates of the temperature of the workspace. This allows for precise predictive control in the absence of complete information about the current temperature state of the section. A generalized temperature estimate is given using a simplified interpretable model based on strip temperature values at the inlet and outlet of the section. To determine the feed forward impact on the power of heating and cooling systems of sections when compensating for disturbances in the product range and line speed, we propose a hybrid model. The model consists of an interpretable and an empirical component based on an artificial neural network. Using the example of a closed cooling section of a continuous hot-dip galvanizing unit, we studied the performance of a generalized temperature estimation stabilization system with a standard PID controller. We identified difficulties due to the complexity of simultaneous effective processing of disturbances according to the task, as well as disturbances caused by errors in the feed forward compensation of disturbances according to the model. To quickly stabilize the generalized temperature estimate in the event of modeling errors, the structure of the control system with two degrees of freedom was chosen. The closed-loop PID controller is configured to handle disturbances caused by modeling errors during predictive control. The direct open control loop is configured to handle disturbances based on a given value of a generalized estimate of the workspace temperature. The performance of the proposed system is demonstrated using the example of a closed strip cooling section. It is shown that the system is able to guarantee control quality even with the maximum possible errors of the hybrid model. The developed hybrid model can also be used to plan the dynamics of temperature changes in the workspace in the long term. The proposed model structures and control systems can also be used for heating sections.
Keywords
About the Authors
M. Yu. RyabchikovRussian Federation
Ryabchikov Mikhail Yu., Associate Professor
Magnitogorsk, 455000
E. S. Ryabchikova
Russian Federation
Magnitogorsk, 455000
D. O. Snitkin
Russian Federation
Magnitogorsk, 455000
References
1. Ryabchikov M. Yu., Ryabchikova E. S., Chuta A. S. Managing flexible galvanized sheet production with product quality and human factors in consideration, Engineering and automation problems, 2023, no. 4, pp. 122—135, doi: 10.52261/02346206_2023_4_122 (in Russian).
2. Ryabchikov M. Yu., Ryabchikova E. S., Chuta A. S., Vasilyeva E. I., Emelyushin A. N. Influence of steel strip speed and tension on product defects on continuous hot-dip galvanizing lines, Vestnik of Nosov Magnitogorsk State Technical University, 2023, vol. 21, no 4, pp. 93—104, doi: 10.18503/1995-2732-2023-21-4-93-104 (in Russian).
3. Ryabchikov M. Yu., Ryabchikova E. S., Novak V. S., Klimenko A. E. Investigation of performance limitations in continuous hot-dip galvanizing units associated with product defects, Izvestiya. Ferrous Metallurgy, 2024, vol. 67, no. 1, pp. 89—105, doi: 10.17073/0368-0797-2024-1-89-105 (in Russian).
4. Tikhonov A. K., Rodionova I. G. Thermomechanical Treatment in the Recrystallizational Annealing of Automotive ColdRolled Steel, Steel in Translation, 2022, vol. 52, iss. 4, pp. 451—459, doi: 10.3103/S0967091222040143.
5. Yu K. R., Ilinca F., Goodwin F. E. Effects of Strip Temperature and Mn content on Galvanizing Bath Management, Galvanizers Association Annual Conference 2017, Troy, MI, USA, 2017.
6. Ryabchikov M. Yu., Ryabchikova E. S. Model for predictive control of the temperature of the zinc melt in the bath during continuous hot-dip galvanizing of steel strip, Problemy chernoj metallurgii i materialovedeniia, 2024, no. 1., pp. 64—73, doi: 10.54826/19979258_2024_1_13 (in Russian).
7. Li P., Fujin L. The optimal design of hot steel strip temperature control algorithm, IFAC Proceedings Volumes, 2003, vol. 36, iss. 24, pp. 129—132, doi: 10.1016/S1474-6670(17)37615-2.
8. Strommer S., Niederer M., Steinboeck A., Jadachowskit L., Kugit A. Nonlinear observer for temperatures and emissivities in a strip annealing furnace, 2016 IEEE Industry Applications Society Annual Meeting, 2016, doi: 10.1109/IAS.2016.7731914.
9. Strommer S., Niederer M., Steinboeck A., Kugi A. Hierarchical nonlinear optimization-based controller of a continuous strip annealing furnace, Control Engineering Practice, 2018, vol. 73, pp. 40—55, doi: 10.1016/j.conengprac.2017.12.005.
10. Yahiro K., Shigemori H., Hirohata K., Ooi T., Haruna M., Nakanishi K. Development of Strip Temperature Control System for a Continuous Annealing Line, Proceedings of IECON ‘93 — 19th Annual Conference of IEEE Industrial Electronics, 2002, pp. 481—486, doi: 10.1109/IECON.1993.339029.
11. Yoshitani N. Optimal Control of Steel Strip Temperature in Continuous Annealing Processes, Materials Science and Engineering Serving Society, 1998, pp. 303—308, doi: 10.1016/B978-044482793-7/50069-2.
12. Niederer M., Strommer S., Steinboeck A., Kugi A. Nonlinear model predictive control of the strip temperature in an annealing furnace, Journal of Process Control, 2016, vol. 48, pp. 1—13, doi: 10.1016/j.jprocont.2016.09.012.
13. Bitschnau L., Kozek M. Modeling and Control of an Industrial Continuous Furnace, 2009 International Conference on Computational Intelligence, Modelling and Simulation, 2009, doi: 10.1109/CSSim.2009.26.
14. Bitschnau L., Jakubek S., Kozek M. Constrained model predictive control of a continuous annealing furnace, Proceedings of the ASME 2010 Dynamic Systems and Control Conference, 2010, pp. 285—292, doi: 10.1115/DSCC2010-4129.
15. Xiao-Bin L., Ding L., Shang-Bin J., Jun-Xian G. Intelligent PID control system for vacuum annealing furnace workpieces temperature, Proceedings of the Third International Conference on Machine Learning and Cybernetics, 2004, pp. 934—940, doi: 10.1109/ICMLC.2004.1382321.
16. Ryabchikov M. Yu., Ryabchikova E. S., Kokorin I. D. System of temperature stabilization in a heating furnace based on sliding mode control and fuzzy logic, Mekhatronika, Avtomatizatsiya, Upravlenie, 2020, vol. 21, no. 3, pp. 143—157, doi: 10.17587/mau.21.143-157 (in Russian).
17. Ryabchikov M. Yu., Ryabchikova E. S., Shmanev D. E., Kokorin I. D. Strip cooling control for flexible production of galvanized flat steel. Izvestiya, Ferrous Metallurgy, 2021, vol. 64, no. 7, pp. 519—529, doi: 10.17073/0368-0797-2021-7-519-529 (in Russian).
18. Ryabchikov M. Y., Ryabchikova E. S. Models for predictive thermal control in steel heat treatment using the continuous hd galvanizing units, BMSTU Journal of Mechanical Engineering, 2023, no. 12 (765), pp. 80—96, doi: 10.18698/0536-1044-2023-12-80-96 (in Russian).
19. Iuchi T., Ohno J., Kusaka R. Temperature Measurement System of Steel Strips in a Continuous Annealing Furnace, Transactions ISIJ, 1976, vol. 16, pp. 195—203.
20. McGuinness M., Taylor S. Strip temperature in a metal coating line annealing furnace, Department of Mathema tics — Research Reports-532, 2004, available at: http://hdl.handle.net/2292/5091.
21. Carozzo G., Cravero C., Marini M., Mazza M. CFD Simulation of a Temperature Control System for Galvanizing Line of Metal Band Based on Jet Cooling Heat Transfer, Appl. Sci, 2020, vol. 10, 5248, doi: 10.3390/app10155248.
22. Depreea N., Sneyd J., Taylor S., Taylor M. P., Chen J. J. J., Wang S., O’Connor M. Development and validation of models for annealing furnace control from heat transfer fundamentals, Computers and Chemical Engineering, 2010, vol. 34, pp. 1849—1853, doi: 10.1016/j.compchemeng.2010.01.012.
23. Niederer M., Strommer S., Steinboeck A., Kugi A. A simple control-oriented model of an indirect-fired strip annealing furnace, International Journal of Heat and Mass Transfer, 2014, vol. 78, pp. 557—570, doi: 10.1016/j.ijheatmasstransfer.2014.06.080.
24. Zhou M., Yu D., Zhou J. A new strip temperature control method for the heating section of continuous annealing line, 2008 IEEE Conference on Cybernetics and Intelligent Systems, 2008, pp. 861—864, doi: 10.1109/ICCIS.2008.4670926.
25. Martíınez-de-Pisón F. J., Pernía A. V., González A., López-Ochoa L. M., Ordieres J. B. Optimum model for predicting temperature settings on hot dip galvanising line, Ironmaking and Steelmaking, 2010, vol. 37, no. 3, pp. 187—194, doi: 10.1179/030192309X12573371383604.
26. Martínez-de-Pisón F. J., Alba-Elías F., Castejón-Limas M., González-Rodríguez J. A. Improvement and optimisation of hot dip galvanising line using neural networks and genetic algorithms, Ironmaking and Steelmaking, 2006, vol. 33, no. 4, pp. 344—352, doi: 10.1179/174328106X101565.
27. Martínez-de-Pisón F. J., Celorrio L., Pérez-de-la-Parte M., Castejón M. Optimising annealing process on hot dip galvanising line based on robust predictive models adjusted with genetic algorithms, Ironmaking and Steelmaking, 2011, vol. 38, no. 3, pp. 218—228, doi: 10.1179/1743281210y.0000000001.
28. Sanz-García A., Fernández-Ceniceros J., Fernández-Martínez R., Martínez-de-Pisón F. J. Methodology based on genetic optimisation to develop overall parsimony models for predicting temperature settings on annealing furnace, Ironmaking and Steelmaking, 2014, vol. 41, no. 2, pp. 87—98, doi: 10.1179/1743281212Y.0000000094.
29. Yongyue Z., Yali J., Weihua C., Zezhong L., Yan Y. A Dynamic Data-driven Model for Predicting Strip Temperature in Continuous Annealing Line Heating Process, Proceedings of the 37th Chinese Control Conference, 2018, pp. 1887—1891, doi: 10.23919/CHICC.2018.8484015.
30. Shin-Yenog K., Jong-Dam C., Kyeong-Bae Y., SeongJay K., Se-Yun L., Jong-Hoon L., Byeong-Won M., Yong-Hae B. A temperature control of steel strip using neural network in continuous annealing process, Proceedings of ICNN’95 — International Conference on Neural Networks, 1995, vol. 1, pp. 631—635, doi: 10.1109/ICNN.1995.488253.
31. Ding H., Shen H., Xie Q. Predictive modeling of strip temperature in continuous annealing furnace: An improved optimization algorithm, ISIJ Int, 2024, vol. 64, no. 5, doi: 10.2355/isijinternational.ISIJINT-2023-379.
32. Sanz-Garcia A., Antoñanzas-Torres F., Fernández-Ceniceros J., Martínez-de-Pisón F. J. Overall models based on ensemble methods for predicting continuous annealing furnace temperature settings, Ironmaking and Steelmaking, 2014, vol. 41, no. 1, pp. 51—60, doi: 10.1179/1743281213Y.0000000104.
33. Seo M., Ban J., Cho M., Bae Y. K., Sang W. K. LowOrder Model Identification and Adaptive Observer-Based Predictive Control for Strip Temperature of Heating Section in Annealing Furnace, IEEE Access, 2021, vol. 9, pp. 53720—53734, doi: 10.1109/ACCESS.2021.3071124.
34. Fein M., Böck-Schnepps M., Strommer S., Niederer M., Steinboeck A., Kugi A. Model-based control and optimization of continuous strip annealing furnaces, Measuring & Process Control, 2016, no. 1, pp. 57—63.
35. Ryabchikov M. Yu., Ryabchikova E. S., Novak V. S. Hybrid model for metal temperature control during hot dip galvani zing of steel strip, Mekhatronika, Avtomatizatsiya, Upravlenie, 2023, vol. 24, no. 8, pp. 421—432, doi: 10.17587/mau.24.421-432 (in Russian).
36. Ryabchikov M. Yu., Ryabchikova E. S. Identification of an object model in the presence of unknown disturbances with a wide frequency range based on the transition to signal increments and data sampling, Computer Research and Modeling, 2024, vol. 16, pp. 315—337, doi: 10.20537/2076-7633-2024-16-2-315-337.
37. Fei H., Zhong-Xue W., Gang L., Xi-Long W. Calculation Model, Influencing Factors, and Dynamic Characteristics of Strip Temperature in a Radiant Tube Furnace during Continuous Annealing Process, Metals, 2022, vol. 12, 1256, doi: 10.3390/met12081256.
38. Chao G., Yingwei Z., Xianqiang Y., Xue C., Yang Z. Optimal Control of Continuous Annealing Process Using PSO, Proceedings of the IEEE International Conference on Automation and Logistics, 2009, pp. 602—606, doi: 10.1109/ICAL.2009.5262851.
Review
For citations:
Ryabchikov M.Yu., Ryabchikova E.S., Snitkin D.O. Predictive Temperature Control of Steel Strip During Hot-Dip Galvanizing Using Thermal Process Model. Mekhatronika, Avtomatizatsiya, Upravlenie. 2025;26(2):84-97. (In Russ.) https://doi.org/10.17587/mau.26.84-97