Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Monoaxial Electrodynamic Stabilization of a Spacecraft Using PID Controller

https://doi.org/10.17587/mau.25.380-387

Abstract

One of the actual problems of modern cosmic dynamics is the development of systems for controlling the angular orientation of spacecrafts with respect to their centers of mass. To solve this problem, magnetic control systems based on the interaction of their executive devices with the Earth’s magnetic field are widely and effectively used. An important class of problems for controlling the angular spacecraft orientation is that of problems of monoaxial stabilization. This paper considers a satellite whose center of mass moves in a circular equatorial low Earth orbit. It is assumed that it is equipped with a controlled electrostatic charge distributed over a certain volume and a controlled magnetic moment. The rotational motion of a satellite with respect to its center of mass in the orbital frame is studied. The problem of monoaxial stabilization of a satellite in an arbitrary equilibrium position is solved. The electrodynamic control method is used which is based on the simultaneous application of a magnetic moment and the moment of Lorentz forces. Each of these moments is selected as a sum of damping, restoring and compensating components. To improve the characteristics of transient processes (damping unwanted oscillations and increasing the speed of convergence to program motion), PID controller of a special type is constructed. The stability analysis of the closed-loop system is carried out on the basis of the Lyapunov direct method. An original construction of the Lyapunov—Krasovskii functional is proposed, with the help of which the conditions on the control parameters are determined that guarantee the asymptotic stability of the program motion. The results of numerical simulation are presented confirming the obtained theoretical conclusions and demonstrating the advantage of the developed approach compared to the use of previously constructed controllers. It is shown that due to the appropriate choice of control parameters, the characteristics of transient processes can be significantly improved

About the Authors

A. Yu. Aleksandrov
Saint Petersburg State University
Russian Federation

Dr. Sc., Professor

Saint Petersburg



S. B. Ruzin
Saint Petersburg State University
Russian Federation

Saint Petersburg



References

1. Schaub H., Junkins J. L. Analytical Mechanics of Space Systems, Reston, Virginia, American Institute of Aeronautics & Astronautics, 2009.

2. Ignatov A. I., Sazonov V. V. Stabilization of the solar orientation mode of an artificial Earth satellite by an electromagnetic control system, Kosmicheskie Issledovaniya, 2018, vol. 56, no. 5. pp. 375—383 (in Russian).

3. Abdel-Aziz Y. A., Shoaib M. Attitude dynamics and control of spacecraft using geomagnetic Lorentz force, Res. Astron. Astrophys., 2015, vol. 15, no. 1, pp. 127—144.

4. Veisi C., Lyubimov V. V. The problem of bringing two satellites together in orbit using numerical simulation, Mekhatronika, Avtomatizatsiya, Upravlenie, 2022, vol. 23, no. 10, pp. 555—559 (in Russian).

5. Pankratov I. A. Genetic algorithm for optimizing energy costs for reorienting the orbital plane of a spacecraft, Mekhatronika, Avtomatizatsiya, Upravlenie, 2022, vol. 23, no. 5, pp. 256—262 (in Russian).

6. Giri D. K., Sinha M. Magneto-coulombic attitude control of Earth-pointing satellites, J. Guid. Control. Dyn., 2014, vol. 37, no. 6, pp. 1946—1960.

7. Giri D. K., Sinha M., Kumar K. D. Fault-tolerant attitude control of magneto-Coulombic satellites, Acta Astronautica., 2015, vol. 116, pp. 254—270.

8. Guelman M., Waller R., Shiryaev A., Psiaki M. Design and testing of magnetic controllers for satellite stabilization, Acta Astronauica., 2005, vol. 56, pp. 231—239.

9. Sofyali A., Jafarov E. M., Wisniewski R. Robust and global attitude stabilization of magnetically actuated spacecraft through sliding mode, Aerospace Science and Technology, 2018, vol. 76, pp. 91—104.

10. Silani E., Lovera M. Magnetic spacecraft attitude control: A survey and some new results, Control Engineering Practice, 2005, vol. 13, no. 3, pp. 357—371.

11. Alpatov A. P., Dranovskii V. I., Saltykov Yu. D., Khoroshilov V. S. Dynamics of spacecrafts with magnetic control systems, Moscow, Mashinostroenie, 1978, 200 p. (in Russian).

12. Antipov K. A., Tikhonov A. A. Parametric control in the problem of spacecraft stabilization in the Earth magnetic field, Avtomatica i Telemechanica, 2007, no. 8, pp. 44—56 (in Russian).

13. Beletskii V. V. Motion of an Artificial Satellite Relative to the Center of Mass. Moscow, Nauka Publ., 1965, 416 p. (in Russian).

14. Zubov V. I. Lectures on Control Theory, Moscow, Nauka Publ., 1975, 496 p. (in Russian).

15. Aleksandrov A. Yu., Tikhonov A. A. Monoaxial electrodynamic

16. stabilization of an artificial Earth satellite in the orbital frame, Avtomatica i Telemechanica, 2013, no. 8, pp. 22—31 (in Russian).

17. Anan’evskii I. M., Kolmanovskii V. B. On stabilization of some control systems with an aftereffect, Avtomatica i Telemechanica, 1989, no. 9, pp. 34—43 (in Russian).

18. Anan’evskii I. M., Kolmanovskii V. B. Stability of some control systems with aftereffect, Differentsial’nye uravneniya, 1989, vol. 25, no. 11, pp. 1848—1852 (in Russian).

19. Formal’sky A. M. On a modification of the PID controller, Dynamics and Control, 1997, vol. 7, no. 3, pp. 269—277.

20. Moradi M. Self-tuning PID controller to three-axis stabilization of a satellite with unknown parameters, International J. Non-Linear Mechanics, 2013, vol. 49, pp. 50—56. 20. Li C. J., Teo K. L., Li B., Ma G. F. A constrained optimal PID-like controller design for spacecraft attitude stabilization, Acta Astronautica, 2012, vol. 74, pp. 131—140.

21. Kamesh S. Nonlinear PID-like controllers for rigid-body attitude stabilization, J. Astronaut. Sci., 2004, vol. 52, no. 1—2, pp. 61—74.

22. Aleksandrov A. Yu., Tikhonov A. A. Monoaxial electrodynamic stabilization of an artificial Earth satellite in the orbital coordinate system via control with distributed delay, IEEE Access, 2021, vol. 9, pp. 132623—132630.

23. Fridman E. Introduction to Time-delay Systems: Analysis and Control, Basel, Birkhauser, 2014.

24. Aleksandrov A. Yu., Chen Y., Kosov A. A., Zhang L. Stability of hybrid mechanical systems with switching linear force fields, Nonlinear Dynamics and Systems Theory, 2011, vol. 11, no. 1, pp. 53—64.

25. Aleksandrov A. Yu., Kosov A. A., Chen Y. On the stability and stabilization of mechanical systems with switching, Avtomatica i Telemechanica, 2011, no. 6, pp. 5—17 (in Russian).


Review

For citations:


Aleksandrov A.Yu., Ruzin S.B. Monoaxial Electrodynamic Stabilization of a Spacecraft Using PID Controller. Mekhatronika, Avtomatizatsiya, Upravlenie. 2024;25(7):380-387. (In Russ.) https://doi.org/10.17587/mau.25.380-387

Views: 184


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)