Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

A Comparison between Kalman Filtering Approaches in Aircraft Flight Signal Estimation

https://doi.org/10.17587/mau.24.590-597

Abstract

At present, the requirements for the accuracy of aircraft on-board measurement systems are constantly increasing, while sensors contain various errors in signal measurement, primarily random. Noisy signals from onboard measurements can be smoothed or filtered out in a variety of ways. One of the most popular approaches is Kalman filtering, the effectiveness of which has been proven by many studies. This paper presents a comparative analysis of the extended Kalman filter (EKF) and unscented Kalman filter (UKF), used to estimate the pitch angle of an aircraft using bench modeling data. During the simulation, the normal measurement noises are also generated. According to the results obtained in this paper, it can be noted that UKF performs better when a priori knowledge about the process noise is certain. However, the efficiency of UKF in estimating the signal deteriorates when a priori knowledge about the process becomes uncertain while the performance of EKF remains stable. This is due to the fact that UKF uses more sophisticated assumptions and therefore is more sensitive to these assumptions violation. The obtained results also show that various variants of Kalman filtering remain relevant in comparison with the smoothing methods that have spread in recent years, based on the ideas of optimal control and evolutionary algorithms for numerical optimization.

About the Authors

O. N. Korsun
State Research Institute of Aviation Systems; Moscow Aviation Institute (NRU)
Russian Federation

Korsun Oleg N., Dr. Sc. (Eng.), Professor, Head of Laboratories

Moscow, 125319

Moscow, 125993



Sekou Goro
Moscow Aviation Institute (NRU)
Russian Federation

Postgraduate Student

Moscow, 125993



Moung Htang Om
Moscow Aviation Institute (NRU)
Russian Federation

Ph. D., Doctoral candidate

Moscow, 125993



References

1. Wan E. A., Van Der Merwe R. The unscented Kalman filter for nonlinear estimation, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373), 2000, pp. 153—158, DOI: 10.1109/ASSPCC.2000.882463.

2. Menegaz H. M. T., Ishihara J. Y., Borges G. A., Vargas A. N. A Systematization of the Unscented Kalman Filter Theory, IEEE Transactions on Automatic Control, 2015, vol. 60, no. 10, pp. 2583—2598. DOI: 10.1109/TAC.2015.2404511.

3. Meinhold R. J., Singpurwalla N. D. Understanding the Kalman Filter, The American Statistician, 1983, vol. 37, no. 2, pp. 123—127, DOI: 10.1080/00031305.1983.10482723.

4. Li Q., Li R., Ji K., Dai W. Kalman Filter and Its Application, The 8th International Conference on Intelligent Networks and Intelligent Systems (ICINIS), 2015, pp. 74—77, DOI: 10.1109/ICINIS.2015.35.

5. Willner D., Chang C. B., Dunn K. P. Kalman filter algorithms for a multi-sensor system, IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes, 1976, pp. 570—574, DOI: 10.1109/CDC.1976.267794.

6. Dunik J., Simandl M., Straka O. Unscented Kalman Filter: Aspects and Adaptive Setting of Scaling Parameter, IEEE Transactions on Automatic Control, 2012, vol. 57, no. 9, pp. 2411—2416, DOI: 10.1109/TAC.2012.2188424.

7. De Marina H. G., Pereda F. J., Giron-Sierra J. M., Espinosa F. UAV Attitude Estimation Using Unscented Kalman Filter and TRIAD, IEEE Transactions on Industrial Electronics, 2012, vol. 59, no. 11, pp. 4465—4474, DOI: 10.1109/TIE.2011.2163913.

8. St-Pierre M., Gingras D. Comparison between the unscented Kalman filter and the extended Kalman filter for the position estimation module of an integrated navigation information system, IEEE Intelligent Vehicles Symposium, 2004, pp. 831—835, DOI: 10.1109/IVS.2004.1336492.

9. Chen B.-C., Hsieh F.-C. Sideslip angle estimation using extended Kalman filter, Vehicle System Dynamics, 2008, 46: sup. 1, 353—364, DOI: 10.1080/00423110801958550.

10. Luo C., McClean S. I., Parr G., Teacy L., De Nardi R. UAV Position Estimation and Collision Avoidance Using the Extended Kalman Filter, IEEE Transactions on Vehicular Technology, 2013, vol. 62, no. 6, pp. 2749—2762, DOI:10.1109/TVT.2013.2243480.

11. Mao G., Drake S., Anderson B. D. O. Design of an Extended Kalman Filter for UAV Localization, 2007 Information, Decision and Control, Adelaide, SA, Australia, 2007, pp. 224—229, DOI: 10.1109/IDC.2007.374554.

12. Li M., Liu L., Veres S. M. Aerodynamic parameter estimation of an Unmanned Aerial Vehicle based on extended kalman filter and its higher order approach, The 2nd International Conference on Advanced Computer Control, 2010, pp. 526—531, DOI: 10.1109/ICACC.2010.5487116.

13. Madyastha V., Ravindra V., Mallikarjunan S.,G oyal A. Extended Kalman Filter vs. Error State Kalman Filter for Aircraft Attitude Estimation, AIAA Guidance, Navigation, and Control Conference, 2011.

14. Majeed M., Narayan Kar I. Aerodynamic parameter estimation using adaptive unscented Kalman filter, Aircraft Engineering and Aerospace Technology, 2013, vol. 85, no. 4, pp. 267—279, DOI: 10.1108/AEAT-Mar-2011-0038.

15. Angrisani L., Baccigalupi A., Lo Moriello S. R. On the Use of Unscented Kalman Filter for Improving Ultrasonic Timeof- Flight Measurement, IEEE Instrumentationand Measurement Technology Conference Proceedings, Ottawa, ON, Canada, 2005, pp. 1606—1611, DOI: 10.1109/IMTC.2005.1604438.

16. Khazraj H., Faria da Silva F., Bak C. L. A performance comparison between extended Kalman Filter and unscented Kalman Filter in power system dynamic state estimation, 51st International Universities Power Engineering Conference (UPEC), Coimbra, Portugal, 2016, pp. 1—6, DOI: 10.1109/UPEC.2016.8114125.

17. LaViola J. J. A comparison of unscented and extended Kalman filtering for estimating quaternion motion, Proceedings of the 2003 American Control Conference, 2003, vol. 3, pp. 2435—2440, DOI: 10.1109/ACC.2003.1243440.

18. Chowdhary G., Jategaonkar R. Aerodynamic Parameter Estimation from Flight Data Applying Extended and Unscented Kalman Filter, AIAA 2006-6146, AIAA Atmospheric Flight Mechanics Conference and Exhibit. 2006.

19. Hao Y., Xiong Z., Sun F., Wang X. Comparison of Unscented Kalman Filters, 2007 International Conference on Mechatronics and Automation, Harbin, China, 2007, pp. 895—899, DOI: 10.1109/ICMA.2007.4303664.

20. Saptoro A. Extended and unscented Kalman filters for artificial neural network modelling of a nonlinear dynamical system, Theor Found Chem Eng., 2012, 46, pp. 274—278, DOI: 10.1134/S0040579512030074

21. Wan E. A., van der Merwe R., Nelson A. T. Dual Estimation and the Unscented Transformation, Advances in Neural Information Processing Systems. Cambridge, MIT, 2000, vol. 12, p. 666.

22. Korsun O., Poliyev A., Stulovskii A. Aircraft Optimal Control for Longitudinal Maneuver Using Population-Based Algorithm. Eng. Proc., 2023, 33(1), 53. https://doi.org/10.3390/engproc2023033053.

23. Diveev A. I., Sofronova E. A., Konstantinov S. V. Approaches to numerical solution of optimal control problem using evolutionary computations, Appl. Sci., 2021, 11, 7096.

24. Korsun O. N., Stulovskii A. V. Direct method for forming the optimal open loop control of aerial vehicles, J. Comput. Syst. Sci. Int., 2019, vol. 58, pp. 229—243.


Review

For citations:


Korsun O.N., Goro S., Om M.H. A Comparison between Kalman Filtering Approaches in Aircraft Flight Signal Estimation. Mekhatronika, Avtomatizatsiya, Upravlenie. 2023;24(11):590-597. https://doi.org/10.17587/mau.24.590-597

Views: 359


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)