

Обзор методов относительной навигации в группах беспилотных летательных аппаратов
https://doi.org/10.17587/mau.24.364-373
Аннотация
Групповое применение беспилотных летательных аппаратов (БПЛА) требует стабильной и высокоточной навигации. Существующие навигационные решения, такие как глобальные навигационные спутниковые системы (ГНСС) и инерциальные навигационные системы, могут работать неэффективно в некоторых сценариях применения. Эту проблему можно решить с помощью методов относительной навигации. В отличие от абсолютной навигации, которая оценивает положение БПЛА относительно Земли, относительная навигация позволяет точно оценить положение БПЛА относительно друг друга. Несмотря на большое число публикаций по относительной навигации, обзоры методов относительной навигации, систематизирующие существующие исследования, практически не встречаются. Кроме того, в различных статьях об относительной навигации используется широкий спектр терминов для схожих понятий, что осложняет изучение темы. Поэтому в данной статье подробно рассматриваются и систематизируются методы относительной навигации и анализируются их возможности и ограничения. На основании результатов обзора предлагается классификация методов относительной навигации, подходящих для групп БПЛА, и представляются результаты их сравнительного анализа. В статье рассмотрены дифференциальные ГНСС, радиочастотные и визуальные методы относительной навигации, а также их комбинации. Для каждого типа метода оцениваются достижимая точность и дальность действия в соответствии с соответствующими исследованиями. Также представляются ограничения и недостатки каждого метода. В результате сформулированы основные возможности относительной навигации и оценено ее текущее состояние.
Об авторе
А. Р. АбдрашитовРоссия
аспирант
г. Долгопрудный
Список литературы
1. Skorobogatov G., Barrado C., Salamí E. Multiple UAV systems: A survey, Unmanned Systems, 2020, vol. 8, no. 2, pp. 149—169.
2. Intel Intel Drone Light Shows, available at: https://www.intel.com/content/www/us/en/technology-innovation/aerial-technology-light-show.html (date of access: January 9, 2023).
3. EHang EHang Egret’s 1374 drones dancing over the City Wall of Xi’an, achieving a Guinness World Records title, available at: https://www.ehang.com/news/365.html (date of access January 9, 2023).
4. Korean Air Korean Air develops world’s first aircraft inspection technology using drone swarms, available at: https://www.koreanair.com/us/en/footer/about-us/newsroom/list/211216-korean-air-develops-world-s-first-aircraft-inspection-tec (date of access January 9, 2023).
5. Li W. et al. Cooperative positioning algorithm of swarm UAVs based on posterior linearization belief propagation, 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), IEEE, 2019, pp. 1277—1282.
6. Scopus, available at: https://www.scopus.com/home.uri/ (date of access January 9, 2023).
7. Christian J. A., Cryan S. A survey of LIDAR techno logy and its use in spacecraft relative navigation, AIAA Guidance, Navigation, and Control (GNC) Conference, 2013, pp. 4641.
8. Capuano V., Harvard A., Chung S. J. Onboard cooperative spacecraft relative navigation fusing GNSS with vision, Progress in Aerospace Sciences, 2022, vol. 128, pp. 100761.
9. Cassinis L. P., Fonod R., Gill E. Review of the robustness and applicability of monocular pose estimation systems for relative navigation with an uncooperative spacecraft, Progress in Aerospace Sciences, 2019, vol. 110, pp. 100548.
10. Brink K. M. Multi-agent relative pose estimation: approaches and applications, Open Architecture/Open Business Model Net-Centric Systems and Defense Transformation 2018, International Society for Optics and Photonics, 2018, vol. 10651, pp. 106510D.
11. Chung S. J. et al. A survey on aerial swarm robotics, IEEE Transactions on Robotics, 2018, vol. 34, no. 4, pp. 837—855.
12. Zhuang C. et al. Cooperative Positioning for V2X Applications Using GNSS Carrier Phase and UWB Ranging, IEEE Communications Letters, 2021, vol. 25, no. 6, pp. 1876—1880.
13. Felter S. C., Wu N. E. A relative navigation system for formation flight, IEEE Transactions on Aerospace and Electronic Systems, 1997, vol. 33, no. 3, pp. 958—967.
14. Lee J. Y. et al. Adaptive GPS/INS integration for relative navigation, GPS solutions, 2016, vol. 20, no. 1, pp. 63—75.
15. Yunfeng Z. et al. A novel relative navigation algorithm for formation flight, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aero-space Engineering, 2020, vol. 234, no. 2, pp. 308—318.
16. Shizhuang W. et al. Highly reliable relative navigation for multi-UAV formation flight in urban environments, Chinese Journal of Aeronautics, 2021, vol. 34, no. 7, pp. 257—270.
17. Gross J. N., Gu Y., Rhudy M. B. Robust UAV relative navigation with DGPS, INS, and peer-to-peer radio ranging, IEEE Transactions on Automation Science and Engineering, 2015, vol. 12, no. 3, pp. 935—944.
18. Broshears E., Martin S., Bevly D. Ultra-Wideband Aided Carrier Phase Ambiguity Resolution in Real-Time Kinematic GPS Relative Positioning, Proceedings of the 26th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS + 2013), 2013, pp. 1277—1284.
19. Sun Y. Autonomous Integrity Monitoring for Relative Navigation of Multiple Unmanned Aerial Vehicles, Remote Sensing, 2021, vol. 13, no. 8, p. 1483.
20. Xiong J. et al. Adaptive hybrid robust filter for multisensor relative navigation system, IEEE Transactions on Intelligent Transportation Systems, 2021.
21. Xiong J. et al. Fault-tolerant relative navigation based on Kullback—Leibler divergence, International Journal of Advanced Robotic Systems, 2020, vol. 17, no. 6, p. 172.
22. Fu L. et al. Vision-aided RAIM: A new method for GPS integrity monitoring in approach and landing phase, Sensors, 2015, vol. 15, no. 9, pp. 22854—22873.
23. Bhattacharyya S., Gebre-Egziabher D. Kalman filter—based RAIM for GNSS receivers, IEEE Transactions on Aerospace and Electronic Systems, 2015, vol. 51, no. 3, [[. 2444—2459.
24. Karlgaard C., Schaub H. Adaptive Huber-based filtering using projection statistics: Application to spacecraft attitude estimation, AIAA Guidance, Navigation and Control Conference and Exhibit, 2008, p. 7389.
25. Ko H., Kim B., Kong S. H. GNSS multipath-resistant cooperative navigation in urban vehicular networks, IEEE Transactions on Vehicular Technology, 2015, vol. 64, no. 12, pp. 5450—5463.
26. Wymeersch H., Lien J., Win M. Z. Cooperative localization in wireless networks, Proceedings of the IEEE, 2009, vol. 97, no. 2, pp. 427—450.
27. Caceres M. A. et al. Hybrid GNSS-ToA localization and tracking via cooperative unscented Kalman filter, 2010 IEEE 21st International Symposium on Personal, Indoor and Mobile Radio Communications Workshops, IEEE, 2010.
28. Shen J. et al. Cooperative relative navigation for multi-UAV systems by exploiting GNSS and peer-to-peer ranging measurements, IET radar, sonar & navigation, 2021, vol. 15, no. 1, pp. 21—36.
29. Zhuang C. et al. Cooperative Positioning for V2X Applications Using GNSS Carrier Phase and UWB Ranging, IEEE Communications Letters, 2021, vol. 25, no. 6, pp. 1876—1880.
30. Chen H. et al. Collaborative Multiple UAVs Navigation With GPS/INS/UWB Jammers Using Sigma Point Belief Propagation, IEEE Access, 2020, vol. 8, pp. 193695—193707.
31. Meyer F. Hlinka O., Hlawatsch F. Sigma point belief propagation, IEEE Signal Processing Letters, 2013, vol. 21, no. 2, pp. 145—149.
32. Ma F., He J., Zhang X. Robust Kalman filter algorithm based on generalized correntropy for ultra-wideband ranging in industrial environment, IEEE Access, 2019, vol. 7, pp. 27490—27500.
33. Decawave DWM1000 Module Decawave, available at: https://www.decawave.com/product/dwm1000-module/ (date of access January 9, 2023).
34. Time Domain P-410 Ultra-Wideband Ranging and Communications Module, available at: http://www.timedomain.com/datasheets/TD_DS_P410_RCM_FA.pdf (date of access January 9, 2023).
35. Friis H. T. A Note on a Simple Transmission Formula, Proceedings of the I. R. E. and Waves and Electrons, 1946, pp. 254—256.
36. Ouyang X. et al. Cooperative navigation of UAVs in GNSS-denied area with colored RSSI measurements, IEEE Sensors Journal, 2020, vol. 21, no. 2, pp. 2194—2210.
37. Shen F., Cheong J. W., Dempster A. G. A DSRC Doppler/IMU/GNSS tight-ly-coupled cooperative positioning method for relative positioning in VANETs, The Journal of Navigation, 2017, vol. 70, no. 1, pp. 120—136.
38. Alam N., Balaei A. T., Dempster A. G. A DSRC Dopplerbased cooperative positioning enhancement for vehicular networks with GPS availability, IEEE Transactions on Vehicular Technology, 2011, vol. 60, no. 9, pp. 4462—4470.
39. Xiong J. et al. Carrier-phase-based multi-vehicle cooperative positioning using V2V sensors, IEEE Transactions on Vehicular Technology, 2020, vol. 69, no. 9, pp. 9528—9541.
40. Wang M. et al. UWB Based Relative Planar Localization with Enhanced Precision for Intelligent Vehicles, Actuators, Multidisciplinary Digital Publishing Institute, 2021, vol. 10, no. 7, pp. 144.
41. Wallace J. W. et al. Cooperative Relative UAV Attitude Estimation Using DoA and RF Polarization, IEEE Transactions on Aerospace and Electronic Systems, 2019, vol. 56, no. 4, pp. 2689—2700.
42. Wang X., Cui N., Guo J. INS/VisNav/GPS relative navigation system for UAV, Aerospace Science and Technology, 2013, vol. 28, no. 1, pp. 242—248.
43. Shao W. et al. A Visual/Inertial Relative Navigation Method for UAV Formation, 2020 Chinese Control And Decision Conference (CCDC), IEEE, 2020, pp. 1831—1836.
44. Lyu Y. et al. Simultaneously multi-UAV mapping and control with visual servoing, 2015 International Conference on Unmanned Aircraft Systems (ICUAS), IEEE, 2015, pp. 125—131.
45. Lowe D. G. Distinctive image features from scale-invariant keypoints, International journal of computer vision, 2004, vol. 60, no. 2, pp. 91—110.
46. Hardy J. et al. Unmanned aerial vehicle relative navigation in GPS denied environments, 2016 IEEE/ION Position, Location and Navigation Symposium (PLANS), IEEE, 2016, pp. 344—352.
47. Karrer M. et al. Collaborative 6dof relative pose estimation for two UAVs with overlapping fields of view, 2018 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2018, pp. 6688—6693.
48. Vemprala S., Saripalli S. Monocular vision based collaborative localization for micro aerial vehicle swarms, 2018 International Conference on Unmanned Aircraft Systems (ICUAS), IEEE, 2018, pp. 315—323.
49. Hao N. et al. Data Links Enhanced Relative Navigation for Robotic Formation Applications, IFAC-PapersOnLine, 2020, vol. 53, no. 2, pp. 9484—9489.
50. Liu X. et al. Measurement-domain cooperative navigation for multi-UAV systems augmented by relative positions, Journal of Aeronautics, Astronautics and Aviation, 2020, vol. 52, no. 4, pp. 403—416.
51. Win M. Z., Shen Y., Dai W. A theoretical foundation of network localization and navigation, Proceedings of the IEEE, 2018, vol. 106, no. 7, pp. 1136—1165.
Рецензия
Для цитирования:
Абдрашитов А.Р. Обзор методов относительной навигации в группах беспилотных летательных аппаратов. Мехатроника, автоматизация, управление. 2023;24(7):364-373. https://doi.org/10.17587/mau.24.364-373
For citation:
Abdrashitov A.R. Survey of Relative Navigation Methods for Multi-Agent Unmanned Aerial Vehicle Systems. Mekhatronika, Avtomatizatsiya, Upravlenie. 2023;24(7):364-373. https://doi.org/10.17587/mau.24.364-373