

Interval Observer Design for Discrete-Time Nonlinear Dynamic Systems
https://doi.org/10.17587/mau.24.283-291
Abstract
The paper considers the problem of interval observer design for nonlinear dynamic systems described by discrete-time models under external disturbances, measurement noise, and parametric uncertainties. The problem is to design the observer with fewer dimensions than that of the original system; such an observer must generate upper and lower bounds of admissible values of the prescribed nonlinear function of the original system state vector. To solve the problem, special mathematical tool is used. The advantage of this tool is that it allows studying the systems described by models with non-smoo th nonlinearities. To construct interval observer, the reduced-order model of the original system insensitive or having minimal sensitivity to the disturbances is designed. The designing procedure is based on two algorithms: the first one is intended to design the model of minimal sensitivity; the second one is used to reduce the dimension of the model. The rules are formulated to ensure stability based on the prescribed set of the desirable eigenvalues and feedback. The interval observer consists of two subsystems: the first one generates the lower bound, the second one the upper bound. The relations describing both subsystems are given. To construct such an observer in the nonlinear case, the terms of positive and negative influence of variables describing the model are introduced. These terms allow finding out how the upper and lower bounds of these variables will appear in the interval observer. The conditions under which the observer can be designed are given. The theoretical results are illustrated by an example of three tank system. Simulation results based on the package Matlab show the effectiveness of the developed theory.
Keywords
About the Authors
A. N. ZhirabokRussian Federation
Vladivostok, 690950
A. V. Zuev
Russian Federation
Vladivostok, 690950
A. E. Shumsky
Russian Federation
Vladivostok, 690950
E. Yu. Bobko
Russian Federation
Vladivostok, 690950
References
1. Zhirabok A., Zuev A., Kim C. Method to design interval observers for linear time-invariant systems, J. Computer and Systems Sciences Int., 2022, vol. 61, no. 5, pp. 485—495, DOI: 10.31857/S0002338822010139.
2. Zhirabok A., Zuev A., Kim C., Bobko E. Yu. Comparative analysis of canonical forms in fault diagnosis and estimation problems, Mekhatronika, Avtomatizatsiya, Upravlenie, 2022, vol. 23, no. 6, pp. 289—294, DOI: 10.17587/mau.23.289-294 (in Russian).
3. Efimov D., Raissi T. Design of interval state observers for uncertain dynamical systems, Autom. Remote Control, vol. 77, no. 2, pp. 191—225, DOI: 10.1134/S0005117916020016.
4. Khan A., Xie W, Zhang L., Liu L. Design and applications of interval observers for uncertain dynamical systems // IET Circuits Devices Syst., 2020, vol. 14, pp. 721—740, DOI: 10.1049/iet-cds.2020.0004.
5. Kolesov N., Gruzlikov A., Lukoyanov E. Using fuzzy interacting observers for fault diagnosis in systems with parametric uncertainty, Proceedings of the XII-th Inter. Symp. Intelligent Systems, INTELS’16, 5-7 October 2016, Moscow, Russia, pp. 499—504.
6. Kremlev A., Chebotarev S. Synthesis of interval observers for linear systems with variable parameters, Izv. Vuzov. Priborostroenie, 2013, vol. 56, no. 4, pp. 42—46 (in Russian).
7. Efimov D., Raissi T., Perruquetti W., Zolghadri A. Estimation and control of discrete-time LPV systems using interval observers, Proceedings of the 52nd IEEE Conf. on Decision and Control. Florence, Italy, 2013, pp. 5036—5041.
8. Chebotarev S., Efimov D., Raissi T., Zolghadri A. Interval observers for continuous-time LPV systems with L1/L2 performance, Automatica, 2015, vol. 51, pp. 82—89, DOI: 10.1016/j.automatica.2015.05.009.
9. Blesa J., Puig V., Bolea Y. Fault detection using interval LPV models in an open-flow canal, Control Engineering Practice, 2010, vol. 18, pp. 460—470, DOI: 10.1016/j.conengprac.2010.01.002.
10. Liu L., Xie W. Khan A., Zhang L. Finite-time functional interval observer for linear systems with uncertainties, IET Control Theory and Applications, 2020, vol. 14, pp. 2868—2878, DOI: 10.1049/iet-cta.2020.0200.
11. Marouani G., Dinh T., Raissi T., Wang X., Messaoud H. Unknown input interval observers for discrete-time linear switched systems, European J. Control, 2021, vol. 59, pp. 165—174, DOI: 10.1016/j.ejcon.2020.09.004.
12. Mazenc F., Bernard O. Asymptotically stable interval observers for planar systems with complex poles, IEEE Trans. Automatic Control, 2010, vol. 55, no. 2, pp. 523—527, DOI: 10.1109/TAC.2009.2037472.
13. Meyer L. Robust functional interval observer for multivariable linear systems. J. Dynamic Systems, Measur. Control, 2019, vol. 141, art. no. 094502, DOI: 10.1115/1.4043334.
14. Zheng G., Efimov D., Perruquetti W. Interval state estimation for uncertain nonlinear systems, Proceedings of the IFAC Nolcos 2013, Toulouse, France, 2013.
15. Zhang K., Jiang B., Yan X., Edwards C. Interval sliding mode based fault accommodation for non-minimal phase LPV systems with online control application, Intern. J. Control, 2019, DOI: 10.1080/00207179.2019.1687932.
16. Zhirabok A., Shumsky А. Algebraic methods of nonlinear dynamic system analysis. Vladivostok, Dalnaura, 2008 (in Russian).
17. Zhirabok A. Fault isolation in nonlinear systems by fault diagnosis method based on generalized algebraic invariants, Autom. and Remote Control, 1994, no. 7, pp. 160—169.
18. Kaldmae A., Kotta U., Jiang B., Shumsky A., Zhirabok A. Faulty plant reconfiguration based on disturbance decoupling methods, Asian J. Control, 2016, vol. 8, pp. 858—867, DOI: 10.1371/journal.pone.0193972.
19. Zhirabok A., Shumsky А., Solyanic S., Suvorov A. Method of design of nonlinear diagnostic observers, Autom. and Remote Control, 2017, vol. 78, pp. 1572—1584, DOI: 10.1134/S000511791709003X.
20. Emelyanov S., Korovin S. eds. Nonlinear dynamic and control. Vol. 6. Moscow, 2008 (in Russian).
Review
For citations:
Zhirabok A.N., Zuev A.V., Shumsky A.E., Bobko E.Yu. Interval Observer Design for Discrete-Time Nonlinear Dynamic Systems. Mekhatronika, Avtomatizatsiya, Upravlenie. 2023;24(6):283-291. (In Russ.) https://doi.org/10.17587/mau.24.283-291