Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search
Open Access Open Access  Restricted Access Subscription or Fee Access

Synthesis of Dynamic Output Feedback Controller Using Functions of Matrix Root-Clustering in D-Regions

https://doi.org/10.17587/mau.24.227-239

Abstract

This article considers an algorithm for the synthesis of dynamic output controller, where the eigenvalues of a closed control system should be located in a given region (D-region) of the complex plane. The main direction of the research is to synthesize dynamic controllers of minimal order when there is no complete controllability at the output. For this purpose, a brief excursion into the external Grassmann algebra is made with the purpose of determining the external product of vectors, on the basis of which the operation of the bialternate product of matrices is explained. The use of the bialternate product of matrices made it possible to introduce the functions of matrix root-clustering of complex eigenvalues located in separate transformable D-regions. For the usual product of matrices, the functions of matrix root-clustering of real eigenvalues located in separate transformable D-domains are introduced. The functions of matrix root-clustering are transforming, respectively, complex or real points of a given bounded or unbounded D-region of the complex plane into a left half-plane. The article considers the main D-domains most widely used in practice (disk, cone, stability margin), presents their matrix root-clustering and functions of matrix root-clustering of real and complex modes. An algorithm for parametric optimization of dynamic output feedback controller over D-domains has been developed. Practical examples of synthesis are considered. For a fourth-order object (a two-mass weakly damped system with two integrators and parametric uncertainty), a secondorder dynamic controller providing robust quality has been synthesized.

About the Author

V. I. Krasnoschechenko
Bauman Moscow State Technical University, Kaluga Branch
Russian Federation

Krasnoschechenko Vladimir I., PhD, Associate Professor

Kaluga, 248000



References

1. Wonham M. On pole assignment in multi-input, controllable linear system, IEEE Trans. Automatic Control, 1967, vol. 12, no. 12, pp. 660—665.

2. Andreev Yu. N. Control of finite-dimensional linear plants, Moscow, Nauka, 1976, 424 p. (in Russian).

3. Willems J. C., Hesselink W. H. Generic properties of the pole placement problem, Proceedings of the 7th IFAC Congress, Helsinki Finland, 1978, pp. 1725—1729.

4. Yang K., Orsi R. Static output feedback pole placement via a trust region approach, IEEE Trans. Automatic Control, 2007, vol. 52, no. 11, pp. 2146—2150.

5. Furuta K., Kim B. Pole placement to a specified disc, IEEE Trans. Automatic Control, 1987, vol. 32, no. 5, pp. 423—427.

6. Brash F. M., Pearson J. B. Pole placement using dynamic compensator, IEEE Trans. Automatic Control, 1970, vol. AC-15, no. 1, pp. 34—43.

7. Rosenthal J., Wang X. A. Output feedback pole placement with dynamic compensators, Report BS-R9516, ISSN 0924-0659, 1995, Amsterdam, 29 p.

8. Haddad W. M., Bernstein D. S. Controller design with regional pole constraints, IEEE Trans. Automatic Control, 1992, vol. 37, no. 1, pp. 54—69.

9. Gutman S., Jury E. J. A general theory for matrix rootclustering in subregions of the complex plane, IEEE Trans. Automatic Control, 1981, vol. 26, no. 4, pp. 853—863.

10. Gutman S., Schwartz G. A root-clustering theorem, IEEE Trans. Automatic Control, 1981, vol. 26, no. 4, pp. 940.

11. Dengqing C. Stability robustness measures of linear ststespace models with structured perturbations, Systems Science and Math. Sciences, 1998, vol. 11, no. 1, pp. 32—38.

12. Saydy L., Tits A. L., Abed E. H. Guardian maps and generalized stability of parametrized families of matrices and polynomials, Mathematics of control, signals and systems, 1990, vol. 3, pp. 345—371.

13. Saussie D., Akhrif Q., Berard C., Saydy L. Longitudinal flight control synthesis with guardian maps, AIAA Guidance, Navigation and Control Conference, 10—13 August 2009, Chicago Illinois, pp. 1—27.

14. Efimov N. V., Rosendorn E. R. Linear algebra and multidimensional geometry, Moscow, Nauka, 1970, 528 p. (in Russian).

15. Stephanos C. Sur une extension du calcul des substitutions lineaires, J. Math.Pures Appl., 1900, vol. 6, pp. 73—128.

16. Jury E. I. Inners and stability of dynamic systems, Moscow, Nauka, 1979, 304 p. (in Russian).

17. Farin G., Hansford D. Practical linear algebra: a geometry toolbox, AK Peters Wellesley Massachusetts, 2005, 384 p.

18. Gutman S. Root clustering of a real matrix in an algebraic region, Int. J. Control, 1979, vol. 29, pp. 871—880.

19. Anderson D. O., Bose N. K., Jury E. I. Output feedback stabilization and related problems — solution via decision methods, IEEE Trans. Automatic Control, 1975, vol. 20, no. 1, pp. 53—66.

20. Krasnoschechenko V. I. Synthesis H∞-robust regulator of the low order by using of linear matrix inequalities and projective lemmas, Mekhatronika, Avtomatizatsiya, Upravlenie, 2018, vol. 19, no 4, pp. 219—230 (In Russian).


Review

For citations:


Krasnoschechenko V.I. Synthesis of Dynamic Output Feedback Controller Using Functions of Matrix Root-Clustering in D-Regions. Mekhatronika, Avtomatizatsiya, Upravlenie. 2023;24(5):227-239. (In Russ.) https://doi.org/10.17587/mau.24.227-239

Views: 311


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)