

Design of Nonlinear Control Systems for Autorobots
https://doi.org/10.17587/mau.24.85-92
Abstract
Currently, various types of robots are increasingly being used to solve different tasks. Most often, these are mobile robots that move on the earth’s surface performing the assigned tasks, in particular, they are four-wheeled robots similar to a car — autorobots. As control objects, the robots are essentially nonlinear, which requires the use of nonlinear methods for the control system design. At the same time, it is difficult to apply traditional methods for designing nonlinear control systems due to a complex type of nonlinearities in the equations of mobile robots and, in particular, autorobots. In this paper, the design problem is solved using a discrete-continuous quasilinear model, which is created on the basis of the nonlinear differential equations in the Cauchy form. Due to the great complexity of the nonlinearities of the autorobot equations, the corresponding quasilinear model is created by the numerical method. The quasilinear model obtained by this method is discrete-continuous and controllable, moreover, its state variables are measurable. The discrete autorobot control system includes two practically independent control subsystems: longitudinal speed and turns. A discrete PI control law is used to control the speed, and the discrete turn control subsystem is designed by the method of desired dynamics. The resulting autorobot control system provides a stable movement along the trajectory, which can be set as a function of time or as a function of the coordinates of the moving autorobot’s position.
The suggested approach can be used to design control systems for nonlinear objects of various purposes with complex differentiated nonlinearities. However, the design problem has a solution if the corresponding discrete-continuous quasilinear model of the object is controllable, and the state variables are measurable.
About the Authors
A. R. GaidukRussian Federation
Dr. of Sc., Professor
Taganrog
D. S. Lukin
Russian Federation
Taganrog
References
1. Ivoilov A. Yu., Zhmud V. A., Trubin V. G., Roth H. Parametric Synthesis of the Control System of the Balancing Robot by the Numerical Optimization Method // Mekhatronica, Avtomatizatsiya, Upravlenie. 2019. Vol. 20, N. 6. P. 532—361. DOI: org/10.17587/mau.20.352-361.
2. Дивеев А. И., Шмалько Е. Ю. Синтез системы управления мобильным роботом методом интеллектуальной эволюции // Надежность и качество сложных систем. 2013. № 3. С. 52—59.
3. Benaoumeur I., Laredj B., Kamel B., Reda H. E., Zoubir A. F. Backstepping controller with force estimator applied for mobile robot // Przeglad Elektrotechniczny, Wydawnictwo Czasopism i Ksiażek Technicznych Sigma. 2019. Vol. 10. P. 18—21. DOI: 10.15199/48.2019.10.03
4. Cruz C. D. L., Carelli R. O. Dynamic modeling and centralized formation control of mobile robots // IECON 2006 — 32nd Annual Conference on IEEE Industrial Electronics. P. 3880—3885. DOI: 10.1109/IECON.2006.347299
5. Pacejka H. B. Tyre and Vehicle Dynamics. Amsterdam: Elsevier, 2006. 642 p.
6. Воевода А. А., Филюшов В. Ю. Линеаризация обратной связью: перевернутый маятник // Сборник научных трудов НГТУ. 2016. № 3(85). С. 49—60.
7. Isidori A. Robust Feedback Design for Nonlinear Systems: a Survey // Turkish Journal of Electrical Engineering and Computer Sciences. 2010. Vol. 18. P. 693—714.
8. Лукьянов А. Г., Уткин В. И. Метод преобразования уравнений динамических систем к регулярной форме // Автоматика и телемеханика. 1981. № 4. С. 5—13.
9. Xia M., Rahnama A., Wang S., Antsaklis P. J. Control Design Using Passivation for Stability and Performance // IEEE Transactions on control. 2018. Vol. 63, No. 9. P. 2987—2993.
10. Pshikhopov V., Medvedev M. Position Control of Vehicles with Multi-Contour Adaptation // Journal of Engineering and Applied Sciences. 2018. Vol. 13. P. 8921—8928.
11. Gaiduk A. R. Design of nonlinear systems based on the controllable Jordan form // Automation and Remote Control. 2006. Vol. 67, No. 7. P. 1017—1027.
12. Гайдук А. Р. Численный метод синтеза квазилинейных моделей нелинейных объектов // Мехатроника, автоматизация, управление. 2021. Т. 22, № 6. С. 283—290.
13. Филимонов А. Б., Филимонов Н. Б. О проблеме согласной параллельной коррекции систем регулирования // Мехатроника, автоматизация, управление. 2015. Том 16, № 8. С. 507—514. DOI.org/10.17587/mau.16.507-514.
14. Жуков К. Г. Алгоритм реализации параллельных вычислений по формулам Рунге-Кутта // Информатика, телекоммуникации, управление. 2021. Вып. 6(138). Часть 2. С. 143—149.
15. Dugoff H., Fancher P., Segel L. An Analysis of Tire Traction Properties and Thire Influence on Vehicle Dynamic Performance // SAE paper 700377. February 01, 1970.
16. Cunha F. H. R., Victorino A. C., Ghandour R., Charara A. Vehicle Dynamics Prediction Based on State Observers Entries Anticipation // Preprints on the 18th IFAC World Congress, Milano, August 28 — September 2. 2011. P. 2260—2265.
17. Можаровский В. В., Кузьменков Д. С., Василевич Ю. В., Киргинцева С. В. Методика и алгоритм расчета параметров контакта при взаимодействии шины колеса с основанием // Математические методы в технологиях и технике. 2022. № 11. С. 43—47. DOI 10.52348/2712-8873_MMTT_2022_11_43.
18. Кабалан А. Е. А., Гайдук А. Р. Преобразование модели автономного робота // Математические методы в технологиях и технике. 2021. № 7. С. 27—30.
19. Лукин Д. С., Гайдук А. Р. Дискретное управление движением автономного робота автомобильного типа // Математические методы в технологиях и технике. 2022. № 1. С. 17—20. DOI 10.52348/2712-8873_MMTT_2022_1_17.
Review
For citations:
Gaiduk A.R., Lukin D.S. Design of Nonlinear Control Systems for Autorobots. Mekhatronika, Avtomatizatsiya, Upravlenie. 2023;24(2):85-92. (In Russ.) https://doi.org/10.17587/mau.24.85-92