

The Principle of Organization of Motivational Behavior and Automatic Goal Setting of Autonomous Intelligent Mobile Systems
https://doi.org/10.17587/mau.24.75-84
Abstract
The expediency of organizing the motivational behavior of autonomous intelligent mobile systems focused on solving various complex problems in unstable a priori undescribed problematic environments is substantiated. That need is due to the fact that this type of goal-seeking behavior allows intelligent systems of various purposes to ensure safe and efficient activity in unstable operating conditions. A model of knowledge representation of autonomous intelligent mobile systems is proposed without regard to a specific subject area and built on the basis of active fuzzy semantic networks. In such networks, vertices are labeled with slots that have many characteristics, which enables in the process of goal-seeking activity to label active vertices with objects and events occurring in the problematic environment that meet their requirements. Edges in such networks are labeled with generalized fuzzy values of corresponding conditions that must be met in a problematic environment between an autonomous intelligent mobile system, various objects, and occurring events. This model of a formalized description of various situations and subsituations of the problematic environment allows intelligent systems to adapt to a priori undescribed operating conditions and, on this basis, automatically plan goal-seeking activities under conditions of uncertainty. To control the motivational behavior and self-organization of autonomous intelligent mobile systems, tools have been developed intended to identify threats to productive activities that arise in a problematic environment. A generalized production-based model of knowledge representation has been built without regard to a specific subject area, which allows intelligent systems to quickly respond to various types of security threats that arise in a problematic environment and maintain operability in the process of performing complex tasks. In conclusion, one of the effective ways of further development of the proposed principle of organizing the safe and efficient operation of autonomous intelligent mobile systems is outlined, which is related to the management of their collective activities in the process of performing a complex task with changes occurring spontaneously in a problem environment, accompanied by the emergence of various types of threats in it that prevent their effective operation.
About the Authors
V. B. MelekhinRussian Federation
Makhachkala
M. V. Khachumov
Russian Federation
Veskovo
Moscow
References
1. Каляев А. В., Чернухин Ю. В., Носков В. Н., Каля- ев И. А. Однородные управляющие структуры адаптивных роботов. М.: Наука, 1990. 152 с.
2. Мелехин В. Б., Хачумов М. В. Инструментальные средства управления целесообразным поведением самоорганизующихся автономных интеллектуальных агентов // Мехатроника, автоматизация, управление. 2021. Т. 22, № 4. С. 171—180.
3. Russell S., Norvig P. Artificial Intelligence: A Modern Approach. 4 ed. Pearson, 2020. 1216 p.
4. Kelly A. Mobile Robotics: Mathematics, Models, and Methods. Cambridge: Cambridge University Press, 2013. 808 p.
5. Мелехин В. Б., Хачумов М. В. Планирование поведения интеллектуального беспилотного летательного аппарата в недоопределенной проблемной среде. Часть 2. Структура и применение фреймов действий // Искусственный интеллект и принятие решения. 2018. № 2. С. 46—56.
6. Melekhin V. B., Khachumov M. V. Fuzzy semantic networks as an adaptive model of knowledge representation of autonomous intelligent systems // Scientific and Technical Information Processing. 2021. Vol. 48, No. 5. P. 333—341.
7. Поспелов Д. А. Ситуационное управление: теория и практика. М.: Наука, 1986. 284 с.
8. Zaden L. A. The concept of a linguistic variable and its application to approximate reasoning, Part I: Information Sciences. 1975. Vol. 8. P. 199—249; Part II: Information Sciences. 1975. Vol. 8. P. 301—357; Part III: Information Sciences. 1975. Vol. 9. P. 43—80.
9. Passino K. M., Yurkovich S. Fuzzy Control. Boston (USA): Addison Wesley Longman, 1998. 522 p.
10. Мелехин В. Б., Хачумов М. В. Планирование поведения автономных интеллектуальных мобильных систем в условиях неопределенности / Под ред. проф. Хачумова В. М. СПб.: Политехника, 2022. 276 с.
11. Martens-Atyushev D. S. Experimental study of a reconfigurable system with hardware task manager and a distributed queue // Journal of Computational and Theoretical Nanoscience. 2019. No. 16(7). Р. 3040—3045.
12. Alfa A. S. Matrix-geometric solution of discrete time MAP/PH/1 priority queue // Naval Research Logistics. 1998. Vol. 45, No. 1. P. 23—50.
13. Мелехин В. Б., Хачумов В. М. Элементы понятийного мышления в планировании поведения автономных интеллектуальных агентов // Мехатроника, автоматизация, управление. 2021. Т. 22, № 8. С. 411—419.
14. Мелехин В. Б., Хачумов М. В. Планирование маршрута целенаправленного полета автономного летательного аппарата на низкой высоте в условиях неопределенности // Авиакосмическое приборостроение. 2018. № 1. С. 18—27.
15. Филимонов А. Б., Филимонов Н. Б. Ситуационный подход в задачах автоматизированного управления техническими объектами // Мехатроника, автоматизация, управление. 2018. Т. 19, № 9. С. 562—578.
Review
For citations:
Melekhin V.B., Khachumov M.V. The Principle of Organization of Motivational Behavior and Automatic Goal Setting of Autonomous Intelligent Mobile Systems. Mekhatronika, Avtomatizatsiya, Upravlenie. 2023;24(2):75-84. (In Russ.) https://doi.org/10.17587/mau.24.75-84