Estimation of State Variables in the Ćuk Converter Mathematical Model with Partially Unknown Parameters
https://doi.org/10.17587/mau.22.451-458
Abstract
In this paper the solution was proposed for the state variables estimation problem in the mathematical model of the DC switch-mode power converter built according to the Ćuk scheme. Pulse converters are one of the main components of most modern electrical devices and the circuit proposed by Slobodan Ćuk in the 70s of the 20th century is still relevant and demanded. Traditionally, PI (proportional-integral) controllers or proportional-integral adaptive control algorithm (PI-PBC), based on passification methods and superior to standard PI controllers in accuracy, are used as the control algorithm for power converters. However, you need to know the entire vector of the state variables of the converter to build a PI-PBC controller, and moreover, all its parameters must be accurately known. Unfortunately, in practice, such assumptions are not fulfilled, since parametric drifting is possible, and measurements of the converter’s state require additional sensors, which in some cases does not justify itself. Thus, there is a need to develop additional observers or estimators that allow obtaining data on all variables of the converter, as well as its parameters. The solution is based on the GPEBO method (generalized parameter estimation-based observers). The problem was solved under assumption that only the output signal (the output voltage of the converter) is measurable and some of the mathematical model parameters are unknown. An important aspect of the observer design is the development of an algorithm for unknown parameters and the state vector of a mathematical model estimation that ensures convergence in a finite time. Finite-time convergence is extremely important when designing observers since transients in pulse converters occur very quickly.
Keywords
About the Authors
A. A. BobtsovRussian Federation
Dr. Sci., Professor
Saint Petersburg, 197101
R. Ortega
Mexico
México
N. A. Nikolaev
Russian Federation
Saint-Petersburg
O. V. Slita
Russian Federation
Saint-Petersburg
O. A. Kozachek
Russian Federation
Saint-Petersburg
C. Wang
Russian Federation
Saint-Petersburg
References
1. Cuk S., Middlebrook R. D. A new optimum topology switching DC-to-DC converter // EEE Power Electronics Specialists Conference. 1977. P. 160—179. doi:10.1109/PESC.1977.7070814.
2. Rosa A. H.R., Morais L. M.F., Fortes G. O., Seleme Júnior S. I. Practical considerations of nonlinear control techniques applied to static power converters: A survey and comparative study // International Journal of Electrical Power and Energy Systems. 2021. Vol. 127, N. 106545.
3. Korshunov A. I. DC voltage pulse converter according to Cuk’s scheme, Silovaya Electronica, 2017, no. 4, pp. 60—66 (in Russian).
4. Korshunov A. I. Stabilization of the output voltage of the Cuk converter. Silovaya Electronica, 2017, vol. 5, no. 68, pp. 80—85 (in Russian).
5. Korshunov A. I. Features of DC voltage stabilization using a Cuk convertor // Practicheskaya Silovaya Electronica, 2017, no. 4 (68), pp. 2—9 (in Russian).
6. Tuvar B. B., Ayalani M. H. Analysis of a Modified Interleaved Non-Isolated Cuk Converter with wide range of load Variation and reduced Ripple content // 3rd International Conference on Trends in Electronics and Informatics (ICOEI). 2019. P. 406—411. doi:10.1109/ICOEI.2019.8862665.
7. Rakshit S., Maity J. Fuzzy Logic Controlled Ćuk Converter // International Conference on Communication and Signal Processing (ICCSP). 2018. P. 0771—0775. doi:10.1109/ICCSP.2018.8524168.
8. Ilman S. M., Dahono A., Prihambodo M. A. K, Putra B. A. Y., Rizqiawan A., Dahono P. A. Analysis and Control of Modified DC-DC Cuk Converter // 2nd International Conference on High Voltage Engineering and Power Systems (ICHVEPS). 2019. P. 1—6. doi:10.1109/ICHVEPS47643.2019.9011054.
9. Ortega R., Loría A., Nicklasson P. J., Sira-Ramirez H. Passivity-based control of Euler-Lagrange systems: mechanical, electrical and electromechanical applications. Springer. 1998. 542 p.
10. Perez M., Ortega R., Espinoza J. Passivity-based PI control of switched power converters // IEEE Trans. Control Syst. Technol. 2004. Vol. 12, N. 6. P. 881—890.
11. Dissanayake A. M., Ekneligoda N. C. Adaptive passivity based control of DC-DC power electronic converters // IEEE Applied Power Electronics Conference and Exposition. 2019. P. 2984—2988.
12. Vasca F., Xiannelli L. Dynamics and Control of Switched Electronic Systems. Advanced Perspectives for Modeling, Simulation and Control of Power Converters. Springer. 2012. 492 p.
13. Hernandez-Gomez M., Ortega R., Lamnabhi-Lagarrigue F., Escobar G. Adaptive PI Stabilization of Switched Power Converters // IEEE Transactions on Control Systems Technology. 2009. Vol. 18, N. 3. P. 688—698.
14. Kalman, R. E., Bucy, R. S. New results in linear filtering and prediction theory // Journal of Basic Engineering. 1961. Vol. 83. P. 95—108.
15. Ortega R., Bobtsov A., Nikolaev N., Schiffer J., Dochain D. Generalized parameter estimation-based observers: Application to power systems and chemical—biological reactors // Automatica. 2021. Vol. 129, N. 109635.
16. Rugh W. Linear systems theory. 1996. NJ, USA. Prentice Hall. 596 p.
17. Dudarenko N. A., Nuya O. S. Serzhantova M. V., Slita O. V., Ushakov A. V. Mathematical basics of system theory: lectures and practice task, Saint-Petersburg NIU ITMO, 2014, 292 p. (in Russian).
18. Aranovskiy S., Bobtsov A., Ortega R., Pyrkin A. Performance enhancement of parameter estimators via dynamic regressor extension and mixing // IEEE Transactions on Automatic Control. 2017. Vol. 62, N. 7. P. 3546—3550.
19. Sastry S., Bodson M. Adaptive Control: Stability, Convergence and Robustness. New Jersey: Prentice-Hall, 1989. 377 p.
20. Ortega R., Gerasimov D. N., Barabanov N. E., Nikiforov V. O. Adaptive control of linear multivariable systems using dynamic regressor extension and mixing estimators: removing the high-frequency gain assumptions. 2019. Automatica. Vol. 110, N. 108589.
Review
For citations:
Bobtsov A.A., Ortega R., Nikolaev N.A., Slita O.V., Kozachek O.A., Wang C. Estimation of State Variables in the Ćuk Converter Mathematical Model with Partially Unknown Parameters. Mekhatronika, Avtomatizatsiya, Upravlenie. 2021;22(9):451-458. (In Russ.) https://doi.org/10.17587/mau.22.451-458