Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Comparison of Inverse Kinematics Algorithms for Multi-Section Continuum Robots

https://doi.org/10.17587/mau.22.420-424

Abstract

Continuum robots are a unique type of robots that move due to the elastic deformation of their own body. Their flexible design allows them to bend at any point along their body, thus making them usable in workspaces with complex geometry and many obstacles. Continuum robots are used in industry for non-destructive testing and in medicine for minimally invasive procedures and examinations. The kinematics of continuum robots consisting of a single bending section are well known, as is the forward kinematics for multi-section continuum robots. There exist efficient algorithms for them. However, the problem of inverse kinematics for multi-section continuum robots is still relevant. The complexity of the inverse kinematics for multi-section continuum robots is quite high due to the nonlinearities of the robots’ motion. The article discusses in detail the modification of the FABRIK algorithm proposed by the authors, as well as a Jacobian-based iterative algorithm. A comparison of inverse kinematics algorithms for multi-section continuum robots with constant section length is given and the results of the experiment are described.

About the Authors

D. Yu. Kolpashchikov
National Research Tomsk Polytechnic University
Russian Federation

Kolpashchikov D. Yu., Engineer

Tomsk, 634000



O. M. Gerget
National Research Tomsk Polytechnic University
Russian Federation

 Tomsk, 634000



References

1. Walker I. D., H. Choset I. D., Chirikjian G. S. Snake- Like and Continuum Robots, Springer Handbook of Robotics, Cham, Springer International Publishing, 2016, pp. 481—498.

2. Axinte D. et al. MiRoR—Miniaturized Robotic Systems for Holistic <italic>In-Situ</italic> Repair and Maintenance Works in Restrained and Hazardous Environments, IEEE/ASME Trans. Mechatronics, Apr. 2018, vol. 23, no. 2, pp. 978—981, doi: 10.1109/TMECH.2018.2800285.

3. Dong X. et al. Development of a slender continuum robotic system for on-wing inspection/repair of gas turbine engines, Robot. Comput. Integr. Manuf., Apr. 2017, vol. 44, pp. 218—229, doi: 10.1016/j.rcim.2016.09.004.

4. Buckingham R., Graham A. Nuclear snake-arm robots, Ind. Rob., 2012, vol. 39, no. 1, pp. 6—11, doi: 10.1108/01439911211192448.

5. Nahar D., Yanik P. M., Walker I. D. Robot tendrils: Long, thin continuum robots for inspection in space operations, 2017 IEEE Aerospace Conference, Mar. 2017, pp. 1—8, doi: 10.1109/AERO.2017.7943940.

6. Liljeback P., Mills R. Eelume: A flexible and subsea resident IMR vehicle, OCEANS 2017 — Aberdeen, Jun. 2017, vol. 2017-Octob, pp. 1—4, doi: 10.1109/OCEANSE.2017.8084826.

7. Burgner-Kahrs J., Rucker D. C., Choset H. Continuum Robots for Medical Applications: A Survey, IEEE Trans. Robot., Dec. 2015, vol. 31, no. 6, pp. 1261—1280, doi: 10.1109/TRO.2015.2489500.

8. Zhang Y., Lu M. A review of recent advancements in soft and flexible robots for medical applications, Int. J. Med. Robot. Comput. Assist. Surg., Jun. 2020, vol. 16, no. 3, p. 10.1002/rcs.2096, doi: 10.1002/rcs.2096.

9. Neppalli S., Csencsits M. A., Jones B. A., Walker I. D. Closed-Form Inverse Kinematics for Continuum Manipulators," Adv. Robot., Jan. 2009, vol. 23, no. 15, pp. 2077—2091, doi: 10.11 63/016918609X12529299964101.

10. Kolpashchikov D., Laptev N., Danilov V., Skirnevskiy I., Manakov R., Gerget O. FABRIK-Based Inverse Kinematics For Multi-Section Continuum Robots, 2018.

11. Kolpashchikov D. et al. Inverse Kinematics for Steerable Concentric Continuum Robots, Smart Innovation, Systems and Technologies, 2020, vol. 154, no. April, pp. 89—100.

12. Jones B. A., Walker I. D. Kinematics for multisection continuum robots," IEEE Trans. Robot., Feb. 2006, vol. 22, no. 1, pp. 43—55, doi: 10.1109/TRO.2005.861458.

13. Mahl T., Hildebrandt A., Sawodny O. A Variable Curvature Continuum Kinematics for Kinematic Control of the Bionic Handling Assistant, IEEE Trans. Robot., Aug. 2014, vol. 30, no. 4, pp. 935—949, doi: 10.1109/TRO.2014.2314777.

14. Sears P., Dupont P. E. Inverse Kinematics of Concentric Tube Steerable Needles, Proceedings 2007 IEEE International Conference on Robotics and Automation, Apr. 2007, no. April, pp. 1887—1892, doi: 10.1109/ROBOT.2007.363597.

15. Webster R. J., Jones B. A. Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review, Int. J. Rob. Res., Nov. 2010, vol. 29, no. 13, pp. 1661—1683, doi: 10.1177/0278364910368147.

16. Aristidou A., Lasenby J. FABRIK: A fast, iterative solver for the Inverse Kinematics problem, Graph. Models, Sep. 2011, vol. 73, no. 5, pp. 243—260, doi: 10.1016/j.gmod.2011.05.003.


Review

For citations:


Kolpashchikov D.Yu., Gerget O.M. Comparison of Inverse Kinematics Algorithms for Multi-Section Continuum Robots. Mekhatronika, Avtomatizatsiya, Upravlenie. 2021;22(8):420-424. https://doi.org/10.17587/mau.22.420-424

Views: 749


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)