Preview

Mekhatronika, Avtomatizatsiya, Upravlenie

Advanced search

Output Adaptive Observers Design for Linear Non-Stationary Systems with Polynomial Parameters

https://doi.org/10.17587/mau.22.404-410

Abstract

The article deals with the problem of state observer design for a linear time-varying plant. To solve this problem, a number of realistic assumptions are considered, assuming that the model parameters are polynomial functions of time with unknown coefficients. The problem of observer design is solved in the class of identification approaches, which provide transformation of the original mathematical model of the plant to a static linear regression equation, in which, instead of unknown constant parameters, there are state variables of generators that model non-stationary parameters. To recover the unknown functions of the regression model, we use the recently well-established method of dynamic regressor extension and mixing (DREM), which allows to obtain monotone estimates, as well as to accelerate the convergence of estimates to the true values. Despite the fact that the article deals with the problem of state observer design, it is worth noting the possibility of using the proposed approach to solve an independent and actual estimation problem of unknown time-varying parameters.

About the Authors

K. B. Dang
ITMO University
Russian Federation

St. Petersburg, 197101



A. A. Pyrkin
ITMO University
Russian Federation

Pyrkin Anton A., Dr. Sc., Professor

St. Petersburg, 197101



A. A. Bobtsov
ITMO University
Russian Federation

St. Petersburg, 197101



A. A. Vedyakov
ITMO University
Russian Federation

St. Petersburg, 197101



S. I. Nizovtsev
ITMO University
Russian Federation

St. Petersburg, 197101



References

1. Pyrkin A. A., Bobtsov A. A., Kolyubin S. A., Faronov M. V., Shavetov S. V., Kapitanyuk Y. A., Kapitonov A. A. Output control approach "consecutive compensator" providing exponential and L∞-stability for nonlinear systems with delay and disturbance, Proceedings of the IEEE International Conference on Control Applications, 201, pp. 1499—1504, paper no. 6044373.

2. Ortega R., Bobtsov A., Pyrkin A., Aranovskiy S. A parameter estimation approach to state observation of nonlinear systems, Systems & Control Letters, 2015, vol. 85, pp. 84—94.

3. Pyrkin A., Bobtsov A., Ortega R., Vedyakov A., Aranovskiy S. Adaptive state observers using dynamic regressor extension and mixing, Systems & Control Letters, 2019, vol. 133, paper no. 104519.

4. Ortega R., Bobtsov A., Dochain D., Nikolaev N. State observers for reaction systems with improved convergence rates, Journal of Process Control, 2019, vol. 83, pp. 53—62.

5. Ljung L. System identification toolbox: User’s guide, Natick, MA. MathWorks Incorporated, 1995.

6. Quoc D. V., Bobtsov A. A. An Adaptive State Observer for Linear Time-Varying Systems with Inaccurate Parameters, Automation and Remote Control, 2020, vol. 81, no. 12, pp. 2220—2229.

7. Le V. T., Korotina M. M., Bobtsov A. A., Aranovskiy S. V., Vo Q. D. Identication of Linear Time-Varying Parameters of Nonstationary Systems, Mekhatronika, Avtomatizatsiya, Upravlenie, 2019, vol. 20, no. 5, pp. 269—265 (In Russ.).

8. Wang J., Le V. T., Pyrkin A. A., Kolyubin S. A., Bobtsov A. A. Identification of piecewise linear parameters of regression models of non-stationary deterministic systems, Automation and Remote Control, 2018., vol. 79, no. 12, pp. 2159—2168.

9. Dang K. B., Pyrkin A. A., Bobtsov A. A. Vedykov A. A. Adaptive observer design for time-varying nonlinear systems with unknown polynomial parameters, Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, no. 3 (In press).

10. Aranovskiy S., Bobtsov A., Ortega R., Pyrkin A. Performance enhancement of parameter estimators via dynamic regressor extension and mixing // IEEE Transactions on Automatic Control. 2016. Vol. 62. № 7. P. 3546—3550.

11. Ortega R., Aranovskiy S., Pyrkin A., Astolfi A., Bobtsov A. New Results on Parameter Estimation via Dynamic Regressor Extension and Mixing: Continuous and Discrete-Time Cases, IEEE Transactions on Automatic Control, 2021, vol. 66, no. 5, pp. 2265—2272.

12. Aranovskiy S., Bobtsov A., Ortega R., Pyrkin A. Improved Transients in Multiple Frequencies Estimation via Dynamic Regressor Extension and Mixing, IFAC-PapersOnLine, 2016, vol. 49, no. 13, pp. 99—104.

13. Pyrkin A., Bobtsov A., Ortega R., Vedyakov A., Aranovskiy S. Adaptive state observers using dynamic regressor extension and mixing, Systems & Control Letters, 2019, vol. 133, paper no. 104519.

14. Cramer G. Introduction a l’analyse des lignes courbes algebriques par Gabriel Cramer, chez les freres Cramer & Cl. Philibert, 1750.

15. Fossen T. I. Handbook of marine craft hydrodynamics and motion control, John Wiley & Sons, 2011.


Review

For citations:


Dang K.B., Pyrkin A.A., Bobtsov A.A., Vedyakov A.A., Nizovtsev S.I. Output Adaptive Observers Design for Linear Non-Stationary Systems with Polynomial Parameters. Mekhatronika, Avtomatizatsiya, Upravlenie. 2021;22(8):404-410. (In Russ.) https://doi.org/10.17587/mau.22.404-410

Views: 545


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1684-6427 (Print)
ISSN 2619-1253 (Online)