РОБОТЫ, МЕХАТРОНИКА И РОБОТОТЕХНИЧЕСКИЕ СИСТЕМЫ

УДК 62-526 + 51-72 + 531.8

DOI: 10.17587/mau.22.28-34

Е. С. Брискин, д-р физ.-мат. наук, зав. кафедрой, dtm@vstu.ru,

Я. В. Калинин, канд. техн. наук, доц., jkv83@mail.ru, **К. С. Артемьев,** студент, subisinebeats@gmail.com, Волгоградский государственный технический университет

Об устойчивости плоского движения мобильных роботов с шагающими движителями, работающими в "тянущем" режиме

Рассматриваются мобильные роботы с шагающими движителями, работающими в "тянущем" режиме, который, как правило, является неустойчивым. Это объясняется заклиниванием движителя за счет ортогональности действующего усилия возможному перемещению точки приложения. Ставится задача разработки такого алгоритма управления роботом, состоящего в целенаправленном изменении геометрической ориентации движителей, управляемых приводом поворота, который обеспечит устойчивое движение. Предложен метод управления ориентацией плоскости шагания при ее начальном отклонении от программного положения, основанный на реализации дискретного алгоритма управления, который предусматривает введение такой кусочно-постоянной функции на каждом шаге движителя, получившего начальное возмущение, которая обеспечит выход на устойчивый режим движения за конечное число шагов. На первом шаге, как и на последующих, выполняется управление изменением ориентации плоскостей шагания движителей, связанных с рулевым управлением, и тем самым изменяется направление движения корпуса робота. Описанный алгоритм предполагает выполнение двух необходимых условий: наличие информационно-измерительной системы, контролирующей ориентацию плоскостей шагания, и обеспечение достаточности сил взаимодействия стоп, управляемых рулевым управлением движителей, с опорной поверхностью для отсутствия проскальзывания. Представлен алгоритм управления "зависимыми" движителями (отрабатывающими программное поступательное движение корпуса) с учетом того, что их ориентация зависит от ориентации управляемых, заключающийся в изменении длины шага, которую также следует определять для обеспечения устойчивости движения. Основной задачей управления "зависимыми" движителями, не изменяющими ориентацию своей плоскости шагания в начальный момент времени, является определение точек постановки стоп за счет изменения длины шага в соответствии с установленными критериями и конструктивными ограничениями, в частности, энергетической эффективностью, максимальными усилиями в приводах, максимальной и минимальной длиной шага. На заключительном этапе корректировки движения за счет выполнения последовательности действий движитель начнет работать в устойчивом "толкающем" режиме. Установлено, что "тянущий" режим работы шагающего движителя может являться устойчивым, при соответствующем управлении.

Ключевые слова: мобильные роботы, движители, плоское движение, устойчивость движения

Введение

Известны различные типы шагающих движителей, которые условно определяются как инсектоморфные, зооморфные, антопоморфные, ортогональные и др. [1, 2]. В отличие от колесного движителя одной из особенностей шагающих движителей является возможность как "подтягивать" к стопе точку подвеса движителя на корпусе робота, так и "отталкивать" ее от себя. Так, например, робот "Ортоног" (рис. 1, см. вторую сторону обложки), имеющий ортогонально-поворотные движители [3], может передвигаться, подтягиваясь к стопам движителей (рис. $2, \delta$), а может и "отталкиваться" от них (рис. 2, а). Такая же особенность характерна для робота с инсектоморфными движителями "MASHA" (рис. 3, см. вторую сторону обложки).

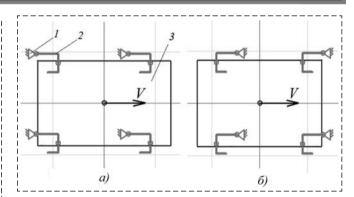


Рис. 2. Компоновка двигательных установок робота "Ортоног": a — "толкающий" режим; δ — "тянущий" режим; I — стопа, соприкасающаяся с опорной поверхностью; 2 — ортогонально-поворотный движитель; 3 — корпус робота; V — направление скорости

Fig. 2. The layout of the propulsion devices of the robot "Ortonog": a —"pushing" mode; b —"pulling" mode; l — support, resting on the ground; l — orthogonal-rotary propulsion device; l — axis of suspension of the propulsion device to the robot body; l — direction of velocity

Отличительной особенностью роботов с шагающими движителями, представляющими собой, как правило, механическую систему с тремя степенями свободы, в том числе и в случае с ортогонально-поворотными движителями, состоит в возможности обеспечения идеальной маневренности движения. Под идеальной маневренностью понимается возможность осуществлять любое наперед заданное плоское движение корпуса без проскальзывания стоп движителей по опорной поверхности [4, 5]. Доказано, что это возможно, если не более двух движителей, стопы которых опираются на грунт, имеют фиксированную ориентацию плоскостей шагания за счет привода рулевого управления, а остальные могут ее изменять в зависимости от внешнего воздействия согласованно с управляемыми. Такие движители, положение плоскостей шагания которых зависит от двух движителей с управляемой ориентацией, в дальнейшем определяются как "зависимые".

Однако в любой произвольный момент времени робот должен уметь двигаться в любую сторону. Следовательно, все движители, в том числе и "зависимые", должны уметь работать как в "тянущем", так и в "толкающем" режимах.

Однако установлено [6], что тянущий режим не только неустойчив, но и часто приводит к ситуациям, когда движение робота невозможно. Это обусловлено взаимной ортогональностью силового воздействия на робот и его возможного перемещения в определенные моменты времени. В свою очередь, возможные перемещения определяются накладываемыми связями в соответствии с выбранной матрицей управления [7]. Поэтому разработка алгоритма устойчивого движения мобильного робота как твердого тела, на которое накладываются связи, обеспечивающие заданное направление движения тех или иных точек, является одной из актуальных задач. Гипотеза о наличии таких связей основывается на предположениях о достаточности сил взаимодействия стопы движителя с фиксированной ориентацией для предотвращения ее проскальзывания на опорной поверхности. Помимо устойчивости по А. М. Ляпунову [8] практическую значимость имеет и задача обеспечения технической устойчивости, состоящей в малом отклонении центра масс робота от программы в пределах заданного промежутка времени [9].

Постановка задачи

Рассматривается плоское движение твердого тела I (рис. 4), на одну из точек которого A накладывается связь

$$f(x_A, y_A) = 0. (1)$$

В частном случае, при прямолинейном движении точки A вдоль оси Ox

$$f(x_A, y_A) = y_A - b = 0, b = \text{const.}$$
 (2)

Известны координаты неподвижной точки B (x_B , y_B) и угол ψ_0 начального отклонения отрезка AB от программного $\psi_0 = 0$, соответствующего поступательному движению тела I. Точка A соответствует точке подвеса движителя к корпусу робота, а точка B — неподвижной стопе.

Поэтому начальная длина S_0 отрезка S при работе движителя в "тянущем" режиме уменьшается, например, с постоянной скоростью V_0 :

$$S = S_0 - V_0 t.$$

Расчетной схеме (рис. 4) соответствует ортогонально-поворотный движитель, шарнирно присоединенный к роботу "Ортоног" (см. рис. 2, δ) при h=0.

Тогда

$$\begin{cases} \dot{x}_A = V_0 \cos \psi + (S_0 - V_0 t) \dot{\psi} \sin \psi; \\ 0 = V_0 \sin \psi - (S_0 - V_0 t) \dot{\psi} \cos \psi. \end{cases}$$
 (3)

Из соотношений (3) следуют законы изменения угла ψ и перемещения точки A вдоль оси Ox:

$$\dot{\Psi} = \frac{V_0}{S_0 - V_0 t} tg \Psi; \quad \dot{x}_A = \frac{V_0}{\cos \Psi}.$$
 (4)

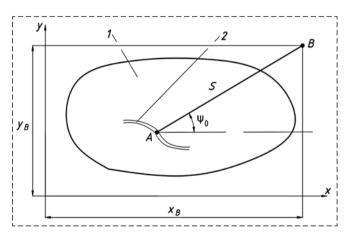


Рис. 4. Расчетная схема движителя:

1 — твердое тело, 2 — кривая, соответствующая уравнению связи (1)

Fig. 4. Calculation scheme:

1 - rigid body, 2 - curve corresponding to the coupling equation (1)

Отсюда, если при t = 0 $\psi = \psi_0$, то

$$\sin \psi = \frac{S_0 \sin \psi_0}{S_0 - V_0 t}.$$
 (5)

Из выражения (5) следует, что угол ψ возрастает с течением времени, не превышающем

$$[\tau] \leqslant \frac{S_0(1-\sin\psi_0)}{V_0}.$$

Дальнейшее движение невозможно, так как происходит заклинивание.

Уравнение в вариациях, составленное для невозмущенного движения (4) в окрестности программного движения $\psi = 0$, имеет вид

$$\delta \dot{\Psi} = \frac{V_0}{S_0 - V_0 t} \delta \Psi,$$

что также свидетельствует о неустойчивости программного движения.

Однако, если целенаправленно управлять ориентацией управляемых движителей, то вместо (2) следует опираться на уравнение (1), которое удобно представить в форме

$$y_A = f(x_A). (6)$$

Тогда вместо уравнений (4) имеют место уравнения

$$\begin{cases} \dot{x}_{A} = \frac{V_{0}}{\operatorname{tg}\gamma \sin \psi + \cos \psi}; \\ \dot{y}_{A} = \operatorname{tg}\gamma \frac{V_{0}}{\operatorname{tg}\gamma \sin \psi + \cos \psi}; \\ \dot{\psi} = \frac{V_{0}}{S_{0} - V_{0}t} \operatorname{tg}(\psi - \gamma); \\ \operatorname{tg}\gamma = \frac{df}{dx_{A}}. \end{cases}$$

$$(7)$$

Ставится задача разработки такого алгоритма управления роботом с движителями, работающими в "тянущем" режиме, состоящего в изменении ориентации движителей, управляемых приводом рулевого управления, который обеспечивает его устойчивое поступательное движение

как твердого тела с прямолинейным в среднем движении его центра масс или, что одно и то же, установлении закономерностей изменения уравнений связей (6) в процессе движения робота, обеспечивающих его устойчивое движение. Для "зависимых" движителей, ориентация которых зависит от ориентации управляемых,

возможно управлять только длиной шага, которую также следует определять для обеспечения устойчивости движения робота.

Управление ориентацией движителя при начальном возмущении его плоскости шагания

Метод решения может быть основан на реализации дискретного алгоритма управления, предусматривающего введение кусочно-постоянной функции $tg(\gamma)$ (7) на каждом шаге движителя, получившего начальное возмущение в программном движении. На рис. 5 представлена возможная схема алгоритма управления поступательным движителем твердого тела с прямолинейным программным движением точки A вдоль оси Ox. Точка A_0 — начальное положение точки подвеса движителя, B_0 — точка установки стопы движителя, на который не накладывается ориентационная связь ("зависимый" движитель).

Таким образом, начальное отклонение продольной оси движения от программного (возмущение ориентации) определяется углом ψ_0 , а начальное расстояние стопы от точки подвеса движителя к корпусу соответствует началу этапа взаимодействия с опорной поверхностью и равно длине шага $A_0B_0=S$.

Тогда выполняется изменение ориентации плоскостей шагания управляемых движителей, связанных с рулевым управлением (угол φ_1), и тем самым изменяется направление движения корпуса робота и, соответственно, точки A. За первый шаг она перемещается из точки A_0 в точку A_1 ($A_0A_1 = \rho$). При этом ориентация движителя изменяется. Его ось меняет свое положение: с направления A_0B_0 на направление A_1B_0 . На втором шаге стопа переносится из точки B_0 в точку B_1 , лежащую на оси Ox. На этом этапе также осуществляется изменение ориентации плоскостей шагания движителей, связанных с рулевым управлением (угла φ_2). При

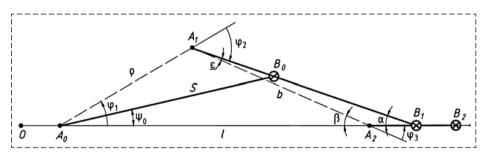


Рис. 5. Геометрическая схема алгоритма управления ориентацией движителей Fig. 5. Geometric scheme of the propulsion devices orientation control algorithm

Алгоритм управления стабилизацией движения робота

Robot motion stabilization control algorithm

Nº	Действие	Результат	Результат при малых ψ ₀ , λ
1	Определение угла α	$\sin\alpha = \frac{\sin\psi_0}{1-\lambda}$	$\alpha \approx \psi_0(1+\lambda)$
2	Определение длины отрезка $A_1A_2=b$	$b = S\sqrt{1 + \lambda^2 - 2\lambda\cos\alpha}$	$b \approx S(1-\lambda)$
3	Определение угла ε	$\sin \varepsilon = \frac{\lambda}{(1-\lambda)^2} \sin \psi_0$	ε ≈ λψ ₀
4	Определение длины отрезка $A_0A_1= ho$	$\rho = S\sqrt{1 + \lambda^2 - 2\lambda\cos(\alpha + \varepsilon)}$	$\rho \approx S(1-\lambda)$
5	Определение угла β	$\sin \beta = \frac{\sin \psi_0}{\sqrt{1 + \lambda^2 - 2\lambda \cos \alpha}} \frac{1}{1 - \lambda}$	$\beta \approx \psi_0(1+2\lambda)$
6	Определение угла φ ₁	$\sin \phi_1 = \frac{\sin \psi_0}{\sqrt{1 + \lambda^2 - 2\lambda \cos(\alpha + \varepsilon)}} \frac{1}{1 - \lambda}$	$\phi_1 = \psi_0(1+2\lambda)$
7	Определение угла ф ₂	$\phi_2 = -\phi_1 - \beta$	$\varphi_2 = -2\psi_0(1+2\lambda)$
8	Определение угла ф3	$\phi_3 = \beta$	$\varphi_3 = \psi_0(1+2\lambda)$
9	Определение пройденного роботом расстояния за два шага $A_0A_2 = l$	$l = \rho \cos \varphi_1 + b \cos \beta$	$l=2S(1-\lambda)$

этом точка A перемещается в точку A_2 за счет "подтягивания" ее точке B_1 . На заключительном этапе (третьем шаге) ориентация плоскостей шагания, управляемых рулевым управлением движителей, вновь изменяется (угол φ_3), а стопа переносится из точки B_1 в точку B_2 .

Описанный алгоритм предполагает наличие информационно-измерительной системы, контролирующей ориентацию плоскостей шагания движителей. Другое необходимое условие состоит в обеспечении достаточности сил вза-

имодействия стоп движителей, кинематически связанных с приводом рулевого управления робота, с опорной поверхностью, не допускающих их проскальзывание. Для аналитического определения углов поворотов φ_1 , φ_2 , φ_3 (рис. 5) исходными данными является конструктивные параметры движителя: максимальное расстояние S и минимальное расстояние $r = \lambda S$ от оси подвеса движителя на корпусе робота (точка A) до места установки стопы (точка B), предполагаемое одинаковым и максимально возможным на

Ф. рад

0,1

0

-0,1

-0,2

-0,3

-0,4

0

0,1

0,2

0,3

0,4

0,5

0,6

t, с

IIIar 1

IIIar 2

IIIar 3

Рис. 6. Графики зависимостей углов ориентации управляемых движителей на каждом шаге коррекции движения. Начальные условия: S=1 м, r=0,3 м, $\psi_0=3^\circ$, $\psi_0=3$ м/с: I— зависимость $\psi=\psi(t)$ при управляемом движения; 2— зависимость $\psi=\psi(t)$ при движении в отсутствие системы управления

Fig. 6. Plots of orientation angles of the controlled propulsion devices at each step of motion correction. Initial conditions: S=1 m, r=0.3 m, $\psi_0=3^\circ$, $\upsilon_0=3$ m/s:

I — dependence $\psi = \psi(t)$ in controlled motion; 2 — dependence $\psi = \psi(t)$ when moving in the absence of a control system

каждом шаге. Желательность максимальности S обусловлено обеспечением минимальности средней силы сопротивления движителю [10, 11]. Требуется также знать начальный угол ψ_0 , фиксируемый информационно-измерительной системой.

Таким образом, алгоритм управления стабилизацией движения робота с движителями, работающими в "тянущем" режиме, предполагает выполнение последовательности операцией, представленных в таблице.

Предложенный алгоритм обеспечения устойчивости движения мобильных роботов с шагающими движителями, работающими в "тяну-

щем" режиме, позволяет определить уравнение движения на основе решения системы дифференциальных уравнений (7), в которых tgy определяется на каждом из этапов:

$$tg\gamma_1 = tg\phi_1;$$

 $tg\gamma_2 = tg(\phi_1 + \phi_2);$
 $tg\gamma_3 = tg(\phi_1 + \phi_2 + \phi_3).$

На графиках (рис. 6) представлена зависимость $\psi = \psi(t)$, где штриховыми линиями обозначены зависимости $\psi = \psi(t)$ при движении без вмешательства системы управления, что приводит к заклиниванию.

Анализ графиков показывает:

- при начальном отклонении плоскостей шагания одного из движителей стабилизация может быть осуществлена на третьем шаге;
- происходит дополнительное поперечное движение корпуса работа, зависящее от геометрических параметров его движителя и начального отклонения;
- движение происходит с переменной скоростью несмотря на постоянную скорость \dot{S} .

Управление ориентацией движителей в отсутствие начального возмущения ориентации плоскостей шагания

Результаты анализа показывают, что для движителей с невозмущенной ориентацией плоскостей шагания поперечное движение корпуса робота является для них внешним возмущением и требует корректировки управления движения. На рис. 7 представлена возможная схема алгоритма управления "зависимым" *j*-м движителем. Основное отличие этого алгорит-

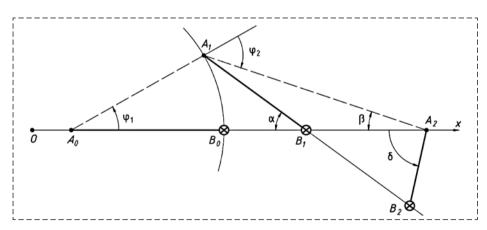


Рис. 7. Геометрическая схема алгоритма управления длиной шага движителей Fig. 7. Geometric scheme of the control algorithm of the propulsion devices step length

ма от предыдущего состоит в том, что $\psi_{0j}=0$, а $\phi_{1j}=\phi_1$, $\phi_{2j}=\phi_2$, $\rho_j=\rho$, $S_j=S$ и не требуют определения. В этом случае нужно на первом этапе стопу механизма шагания, находящуюся в переносе, установить в положение B_1 , а взаимодействующую с опорной поверхностью в точке B_0 перевести в фазу переноса. При достижении точкой подвеса движителя A_0 положения A_1 осью ориентации его плоскости шагания будет являться прямая A_1B_1 . На следующем этапе стопа механизма шагания переносится в точку B_2 с таким расчетом, чтобы выполнялись условия

$$\beta + \delta > \frac{\pi}{2}, \ \delta < \frac{\pi}{2} \tag{8}$$

при наличии конструктивных ограничений

$$A_1 B_2 \leqslant S, \quad B_2 A_2 \geqslant r. \tag{9}$$

Условия (8) обусловлены требованиями отсутствия положения движителя относительно корпуса, при котором силовое воздействие на робот со стороны движителя ортогонально его возможному перемещению. На последующем этапе точка подвеса движителя к роботу двигается прямолинейно вдоль оси Ox, а движитель работает в устойчивом "толкающем" режиме.

Таким образом, задачей управления "зависимыми" движителями, которые в начальный момент не изменяют ориентацию своей плоскости шагания, является определение точек B_1 и B_2 постановки стоп за счет изменения длины шага. Критерием выбора мест установки стоп (точки L_i , N_i на рис. 8) являются неравенства (8), (9) и дополнительные условия, вытекающие из динамических, энергетических и других характеристик движения.

Расположение мест установки стоп L, N влияет на характер функции угла ориентации "за-

висимых" движителей, которая позволяет определять показатели оптимальности управления I_1 , I_2 и др.:

$$I_1 = \int_{0}^{\tau} \dot{\psi}^2 dt, \ I_2 = \int_{0}^{\tau} \dot{\psi}^2 dt,$$

где τ — время выхода на режим с установленной точностью угла ориентации плоскости шагания Δ .

Таким образом, рассмотренные алгоритмы позволяют обеспечить устойчи-

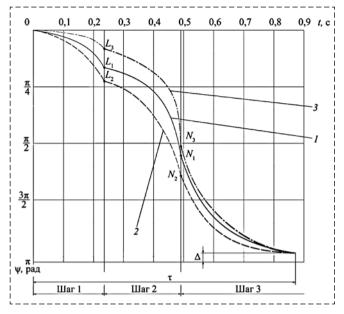


Рис. 8. Изменение углов ориентации "зависимых" движителей на каждом из этапов шагания. Начальные условия:

1-S=1 M, r=0,3 M, $\psi_0=3^\circ,\,\upsilon_0=3$ M/c; 2-S=1,5 M, r=0,3 M, $\psi_0=3^\circ,\,\upsilon_0=3$ M/c; 3-S=0,6 M, r=0,3M, $\psi_0=3^\circ,\,\upsilon_0=3$ M/c Fig. 8. Change the orientation angles of the "dependent" propulsion devices at each step of the step. Initial conditions:

I-S=1 m, r=0,3 m, $\psi_0=3^\circ,$ $\upsilon_0=3$ m/s; 2-S=1,5 m, r=0,3 m, $\psi_0=3^\circ,$ $\upsilon_0=3$ m/s; 3-S=0,6 m, r=0,3 m, $\psi_0=3^\circ,$ $\upsilon_0=3$ m/s

вость движения и имеют аналоги в технике: вывод из заноса автомобиля за счет изменения ориентации управляемых колес, приводящего к движению центра масс автомобиля в разные стороны.

Выводы

Доказано, что "тянущий" режим работы шагающего движителя при соответствующем управлении может быть реализован и не приводит к "заклиниванию".

Предложены алгоритмы изменения ориентации управляемых движителей и длины шага "зависимых" движителей, обеспечивающие устойчивость движения.

Показано, что восстановление программного движения при первоначальном возмущении может быть достигнуто за несколько шагов, при которых осуществляются разнонаправленные управляющие воздействия на привод ориентации движителя, получившего отклонение.

Предложенный алгоритм управления может быть развит с учетом дополнительных критериев качества движения, в общем случае нескольких, что позволит ставить задачи оптимизации управляемого движения и определения наиболее рациональных параметров движителей и последовательности управляющих воздействий при возмущенном движении.

Список литературы

- 1. **Охоцимский Д. Е., Голубев Ю. Ф.** Механика и управление движением автоматического шагающего аппарата. М.: Наука, 1984. 310 с.
- 2. **Павловский В. Е.** О разработках шагающих машин // Препринты ИПМ им. М. В. Келдыша. 2013. № 101. 32 с.
- 3. **Малолетов А. В., Брискин Е. С.** Оптимизация структуры, параметров и режимов движения шагающих машин со сдвоенными движителями. Волгоград: ВолгГТУ, 2015. 174 с.
- 4. **Артоболевский И. И., Умнов Н. В.** Некоторые проблемы создания шагающих машин // Вестник АН СССР. 1969. № 2. С. 22—27.
- 5. **Умнов Н. В., Тартаковский И. И.** О выборе структурной схемы шагающей машины // Машиноведение. 1966. № 6. С. 47.
- 6. Лепетухин К. Ю., Калинин Я. В., Малолетов А. В., Брискин Е. С. Управление движением группы сочлененных роботов в анизотропной и неоднородной среде // XII мультиконференция по проблемам управления (МКПУ-2019) (Дивноморское, Геленджик, 23—28 сентября 2019 г.): материалы конф. В 4 т. Т. 2. Ростов-на-Дону; Таганрог, 2019. С. 17—19.
- 7. **Брискин Е. С., Вершинина И. П., Малолетов А. В., Шаронов Н. Г.** Об управлении движением шагающей машины со сдвоенными ортогонально-поворотными движителями // Известия Российской академии наук. Теория и системы управления. 2014. № 3. С. 168.
- 8. **Меркин Д. Р.** Введение в теорию устойчивости движения. М.: Наука, 1976. 305 с.
- 9. Моисеев Н. Н. Асимптотические методы нелинейной механики. М.: Наука, 1969. 379 с.
- 10. **Игнатьев М. Б., Кулаков Ф. М., Покровский А. М.** Алгоритмы управления роботами и манипуляторами. М.: Машиностроение, 1972. 248 с.
- 11. **Брискин Е. С., Соболев В. М.** Тяговая динамика шагающих машин с ортогональными движителями // Проблемы машиностроения и надежности машин. 1990. № 3. С. 28—34.

On the Stability of the Plane Movement of Mobile Robots with Walking Propulsion Devices Working in "Pulling" Mode

E. S. Briskin, dtm@vstu.ru, Ya. V. Kalinin, jkv83@mail.ru, K. S. Artemyev, subisinebeats@gmail.com, Volgograd State Technical University, Volgograd, 400005, Russian Federation

Corresponding author: Briskin Evgeny S., Doct. of Phys.-Math. Sciences, Volgograd State Technical University, Volgograd, 400005, Russian Federation, e-mail: dtm@vstu.ru

Accepted on July 30, 2020

Abstract

Mobile robots with walking propulsion devices operating in a "pulling" mode, which, as a rule, are unstable, are considered. It is explained to the jamming of propulsion device due to the orthogonality of the acting force to the virtual displacement of the point of application. The task is to develop such an algorithm for controlling the robot, which consists in purposefully changing the geometric orientation of the propulsion devices controlled by the swing drive, which will ensure stable motion. A method for controlling the orientation of the walking plane with its initial deviation from the programmed position is proposed, based on the implementation of a discrete control algorithm, which provides for the introduction of such a piecewise constant function at each step of the mover, which has received an initial perturbation, which will provide a stable motion mode in a finite number of steps. The change in the orientation of the walking planes of the propellers connected with the steering is controlled, and thereby the direction of movement of the robot body changes in the first step, as in the subsequent ones. The described algorithm assumes the fulfillment of two necessary conditions; the presence of an information-measuring system that controls the orientation of the walking planes and ensuring that the interaction forces of the feet controlled by the steering of the propulsion devices with the supporting surface are sufficient for the absence of slippage. An algorithm for controlling "dependent" propulsion devices (working out the programmed translational motion of the body) is presented, taking into account the fact that their orientation depends on the orientation of the controlled ones, which consists in changing the step length, which should also be determined to ensure movement stability. The main task of controlling "dependent" propulsion devices, which do not change the orientation of their walking plane at the initial moment of time, is to determine the points for setting the feet by changing the step length, in accordance with the established criteria and design constraints, in particular, energy efficiency, maximum efforts in drives, maximum and minimum stride length. The propulsion device will start to work in a stable "pushing" mode at the final stage of motion correction, by performing a sequence of actions. It has been established that the "pulling" mode of the walking propulsion device can be stable, with appropriate control.

Keywords: planar motion, mobile robots, propulsion device, stability of motion

For citation:

Briskin E. S., Kalinin Ya. V., Artemyev K. S. On the Stability of the Plane Movement of Mobile Robots with Walking Propulsion Devices Working in "Pulling" Mode, *Mekhatronika, Avtomatizatsiya, Upravlenie*, 2021, vol. 22, no.1, pp. 28—34.

DOI: 10.17587/mau.22.28-34

References

- 1. **Okhotsimskiy D. E., Golubev Y. F.** Mechanics and motion control of an automatic walking apparatus, Moscow, Nauka, 1984, 310 p. (in Russian).
- 2. **Pavlovskiy V. E.** For elaboration of walking machines, *Keldysh Institute preprints M. V. Keldysh.* 2013, no. 101, 32 p. (in Russian).
- 3. **Maloletov A. V., Briskin E. S.** Optimization of the structure, parameters and modes of movement of walking machines with twin propulsion devices, Volgograd, VolgGTU, 2015, 174 p. (in Russian).
- 4. **Artobolevskiy I. I., Umnov N. V.** Some problems of creating walking machines, *Bulletin of the Academy of Sciences of the USSR*, 1969, no. 2, pp. 22—27 (in Russian).

- 5. **Umnov N. V., Tartakovskiy I. I.** On the choice of a structural diagram of a walking machine, *Mashinovedeniye*, 1966, no. 6, p. 47 (in Russian).
- 6. Lepetukhin K. Y., Kalinin Y. V., Maloletov A. V., Briskin E. S. Controlling the movement of a group of articulated robots in an anisotropic and heterogeneous environment, XII multiconference on management problems (MKPU-2019) (Divnomorskoe, Gelendzhik, September 23—28, 2019): materials of the conf., Rostov-on-Don; Taganrog, 2019, vol. 2, pp. 17—19 (in Russian).
- 7. **Briskin E. S., Vershinina I. P., Maloletov A. V., Sharonov N. G.** On the control of motion of a walking machine with twin orthogonal rotatory movers, *Journal of Computer and Systems Sciences International*, 2014, vol. 53, no. 3, pp. 464—471.
- 8. **Merkin D. R.** Introduction to the theory of motion stability, Moscow, Nauka, 1976, 305 p. (in Russian).
- 9. **Moiseyev N. N.** Asymptotic methods of nonlinear mechanics, Moscow, Nauka, 1969, 379 p. (in Russian).
- 10. **Ignat'yev M. B., Kulakov F. M., Pokrovskiy A. M.** Control algorithms for robots and manipulators, Moscow, Mechanical Engineering, 1972, 248 p. (in Russian).
- 11. **Briskin E. S., Sobolev V. M.** Traction dynamics of walking machines with orthogonal propulsion devices, *Problemy Mashinostroyeniya i Nadezhnosti Mashin*, 1990, no. 3, pp. 28—34 (in Russian).