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Control of Parametrically Perturbed Objects with a Full Information

Abstract

The objective of this paper was to justify the new synthesis method of stabilizing controller for parametrically perturbed systems,
which often appear in mobile robots, aircrafts, engineering objects with non-stationary parameters, intellectual control systems with a
self-learning etc. Due to the high complexity and uncertainty of these systems, the classical PID controllers are not applicable and so
a full information about the object state vector is used. Controllers obtained in this way allow to minimize the integral quality criterion
of the system with the worst case parameter perturbation. For this purpose, the methods of differential games and switching systems
theories were applied. Control laws are calculated by using the value function of the corresponding differential game, which can be
obtained by solving the Hamilton-Jacobi-Bellman-Isaacs equations. A special set of basic functions was developed to approximate the
value function and satisfy the boundary conditions. Finally, controller synthesis for a specific object with a nonstationary parameter
is given. It significantly exceeds both the linear and fuzzy controllers in terms of quality. In the task of analyzing system qualitative
characteristics under the worst parametric perturbation, our results are compared to the modern direct collocation methods of optimal
control. With the same accuracy, proposed method is two times faster for low order systems. To verify that developed controllers can
be employed in real time applications, we present computational time and memory usage in the end of the article.
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®Irb0Y BO MNPOA — Poccuiickuin TexHonormdeckmnii yHusepcuteT, Mockea, Poccus

YnpaBneHue napameTpuyecku Bo3myLlaeMbiMU 06 beKTaMmn
npyv HanNnM4YnmM NOSTHOM MHopMaLum

ue/lblO OJaHHOU cmambvu A645emcs 000CHO8AHUE HO8020 Memoda cunmesa cma6unu3upyiomux pezyaamopoe ons napame-
mpu14ecKU 603MYUL€HHbIX CUCMeM, KOmopble Hacmo ecmpe4armcs 8 MOOUNbHOU poﬁomomexﬂulce, becnunomHublX 1emamenbHblX
annapamax, UCHOJAHUMENbHbLX I’lpllGOd(IX C HeCmayuoHapHsvimMu napamempamu, UKMeANeKmYadabHblX cucmemax ynpaeieHus
c CaM006y’1€Hu€M u m. 0. H3-3a evicokoli caroxcHocmu u Heonpe()e/zeHHocmu amux cucmem Kiaccuveckue HH,ZZ pezcyaamopasl
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0KA3bl6AIOMCS HeNPUMEHUMbL, NOIMOMY 6 0aHHOU pabome npedarazaemcsi UCHOAb306AMb NOAHYIO UHDOPMAYUIO O 6eKmope
cocmosiHusi obsexma. I[loayuennoie makum o6pa3om peeyasmops. NO3G0ASIOM MUHUMUIUDOBAMb UHMESPAAbHbII Kpumepui
Kavecmea cucmembl NpU HAUXYOuleM 603MYueHUU ee napamempos. Jis 3mo2o Oviau npumerneHsl Memoost Ougppeperyuanbibix
uep u meopuu nepexayaemMbix cucmem. 3aKoHbl YNnpaeieHus 8biMUCAAIOMCA HA OCHO8e (YHKUUU UeHbl COOMEemcmayouel
Jughepenyuanrvroli uepvl, Komopas moxcem Ovims noayyena nymem peuwtenus ypaenenui lamusomona—Sxobu—beasmana—
Atizexca. Jlna annpokcumayuu QyHKyuU yervl u y0oeiemeoperus 2paHutHblX ycA08ull 0bla pazpaboman cneyuaibHolii Habop
basucnbix ynkyul. B nocaednem pazdene npueeden npumep cunme3da peeyiamopa 045 KOHKPemHo20 00seKkma ¢ Hecmayuo-
HapHvim napamempom. Ilo kauecmay nepexoO0HsIX NPOYECCO8 OH 3HAYUMEALHO NPEeBOCXO0UM NUHeliHble U HeuemKue pecyasimo-
pol. B zadaue anaaruza kauecmeennvix xapaxmepucmuk cucmemol npu 0elicmeuu HauXyouux napamempuecKkux 03MyueHul
Hawiu pe3yabmamol CPAGHUBAIOMCSL C COBPEMEHHbIMU HUCACHHBIMU Memodamu ONMmumMalbho2o ynpasienus. llpu moi xce moy-
Hocmu npedaazaembvili Memod pabomaem 6 dea pasza Ovicmpee 045 cCUCHEM HeBblCOK020 nopadka. 4Ymobvr y6edumovcs, umo
Pa3pabomanuble pecyaamopbl MONCHO UCNOAb308AMb 6 PedNbHbIX CUCMEeMAX, 8 KOHUe CIambl NPUEOOUMCSL 8PEML GbIMUCACHULL
ynpaeaaruwux 6osdelicmeutl u 00sem UCHOAb308AHHOU namamu IBM.

Karoueenvte caosa: dughpepenyuanvuvie uepsi, ypaguenus lamuromona—Sxobu—beaiamana—Aiizexca, ynkyus yenol,
nepekailouaemvie cucmeMmsl ynpasaenus, abcoalomuas ycmouuueocms, Qyukyuu Janynoea, Heagnas cxema Jiisepa, Hewemkue

pez2yasmopbl

Introduction

In recent decades artificial intelligence methods
have proven their efficiency in the tasks of complex
dynamical objects control [1, 2]. One example of their
successful application are non-stationary systems ex-
posed to various uncertainty factors [3, 4]. These types
of systems are used to describe aircrafts [5], mobile
robots [6—S8], actuators [9], etc. However, the choice
of the structure and parameters of an intelligent con-
troller as well as the analysis of the stability of the
overall system is still a difficult and not fully resolved
problem. A possible solution is the theory of absolute
stability, which allows to determine the admissible
sectors in which the nonlinear characteristics of the
intelligent controller should be located.

Numerical algorithm proposed in Berdnikov
(2018) studies can be used for constructing Lyapu-
nov spline functions to solve the problem of absolute
stability of the system with several nonstationary ele-
ments [10]. Later, this algorithm was used to construct
guaranteed stability regions of automatic control sys-
tem (ACS) with fuzzy controllers and parametrically
perturbed objects [11, 12]. Even though the synthe-
sized systems are stable, two questions still need to
be answered. The first one is related to the choice of
a fuzzy controller specific characteristics in a stable
sector. The second one concerns determination of the
object’s worst-case parameters changing.

To avoid these drawbacks, this paper proposes
the new algorithm for synthesizing nonlinear con-
troller characteristics of ACS with parametrically
perturbed objects. Its main idea is to use the theory
of differential games for switching systems. In this
context, a two-player differential game is consid-
ered. One of the players tries to minimize a pre-
selected quality criterion by using control, while the

other tries to maximize it using parametric pertur-
bation. Approximation of the game value function is
the result of the algorithm. If there is complete in-
formation about the state vector of the system, this
approach allows to synthesize optimal control laws
in the form of feedbacks. On the other hand, the
analysis of differential game permits the formation
of the worst-possible perturbations in the system.
It leads to the guaranteed estimation of the sys-
tem quality criterion, which means it can’t be worse
with any other possible parameters perturbations.
This work is structured in the following way. Sec-
tion 1 includes a detailed task description, the aim
of which is to resolve a Hamilton-Jacobi-Bellman-
Isaacs partial differential equation (HJBI). Section 2
introduces the special set of basis functions which
help to approximate solution of the HIBI equations.
Distinguishing characteristic of these functions is
that the boundary condition is always satisfied. In
Section 3, to simplify the process of finding a solu-
tion, methods of differential games with switching
strategies are applied. Section 4 develops a numeri-
cal algorithm for constructing an approximate solu-
tion of HJBI equations for a switching system. Sec-
tion 5 gives an analysis of the specific system with
parametrically perturbed object. Discussion of the
results and conclusion are presented in Section 6.

1. Problem statement

Consider a system described by equations

% =F(t,x,u,w)=f(x)+g,(x)u+g,(x)w, (1)

where x = (x;, x5,...,x;)" — d-dimensional column
vector of state variables, u = (ul,uz,...,up)T —
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p-dimensional column vector of controls,
(w, w2,...,wq)T — g-dimensional column vector of
disturbance; f(x), g,(x), g,(x) — matrix functions of
the corresponding dimensions. The restrictions on
the vectors of control and disturbancesu € Uy we W
(2) are imposed.

2

U={uecR?|-0<ul <u <u? <+o};

i @)

WZ{WERq|—OO<W}-<Wj<Wj<+OO}.

This work examines the issue of synthesis of sta-
bilizing optimal controller for parametrically per-
turbed objects. In contrast to [11, 12], this type of
controller should minimize some pre-selected qua-
lity criterion J. Obviously, it will be different for
various perturbations of a given class w(¢). In this
regard, it is advisable to tune the controller, assum-
ing that the system has some "worst" w'(7) perturba-
tion for the chosen criterion, i.e. the perturbation is
maximizing J among all other w(¢) (in the context
of the concept of antisipative strategies [13]).

It is well known from the theory of differential
games [14] that if the quality criterion is presented
as the sum of the integral component and the ter-
minal cost:

J(xg,u(*),w()) = ?L(x, u,wydt+h(x(T)),
0

xy = x(0),

the solution of the partial differential equation (3)
n, x),

Ot  ueU weW | Ox
=0,V(T,x) = h(x),
when the additional condition of the saddle point is
fulfilled (Isaac’s condition)

o + min max {ﬂ, F(t, x,u,w)+ L(t,x,u, w)} = 3)

min max{/(x,u(), w())} =

= max min{/(x,u("), w())},
is the value function of the game. Moreover, if V{7, x)
known, the optimal control and the worst perturbation
can be found in the form of feedback (4).

(1663

4
€ arg min max {(%—V, F (x,u, w)J + L(x,u, w)}

uel weW X

Next, we will consider quality criteria which op-
erates on an infinite time interval and do not ex-
plicitly depends on control and disturbance, namely:

J (%0 u(),w()) = [L(x)dt, 5)
0

where L(x) > 0 for x # 0 and L(0) = 0. It was shown
in [15, 16] that if V(x) is a solution of the equation

uel weW X
V(0) =0,

min max {(%—V, F(x,u, w)j +L(x,u, w)} =0, ©)

and if N(x) > 0, dV /dt =0V /ox, F(x,u,w)) <0 for
x # 0, and the Isaac’s condition is satisfied, then W(x)
is the Lyapunov function establishing the asymptotic
stability of the system. Moreover, in some region of the
origin V(x) is the value function of the corresponding
differential game, and the optimal controls and the
worst perturbations are obtained in the form of
feedback by the formula (4). Note that in our case,
the Isaac’s condition is satisfied, since system (1) is
divided by control and perturbation, and the quality
criterion does not at all depends on « and w [17].
Thus, calculation of W(x) in (6) permits to solve the
problem completely. This paper proposes a numerical
method for approximation of the solutions of HJBI
equations, which contains the following main steps:
1) Construction of a set of basis functions for which
the boundary condition V(0) = 0 is always satisfied;
2) Transformation of the initial system into a
switching one. This step will simplify the subsequent
procedure of the numerical search for a solution (6);
3) Development of numerical algorithm for ap-
proximating the value function V(x) of a switching
system.
In the following sections, the steps set out above
will be discussed.

2. Basis Functions Construction

There are several numerical methods of approxi-
mation for the solutions of nonlinear partial differ-
ential equations in current literature. They include
finite-difference methods [18], finite-elements me-
thods [19], Galerkin methods [20], methods based
on radial basis functions (RBF) [21] and others [see,
for example, 22]. We will consider the last one. The
main advantage of using radial basis functions is that
it is not necessary to define a dense structured space
grid, at the nodes of which the desired solution is
approximated. This circumstance makes it possible
to better cope with the so-called curse of dimensio-
nality," namely that the computational resources and
computer memory exponentially grow with increa-
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sing dimension d. In fact, classical numerical me-
thods are not applicable for the dimension d > 4 of
the space on non-specialized computers.
In RBF-based methods, the solution is searched
in the form
m
S(x) = Y a0 (x), (7)
k=1
where ¢,(x) — are basis functions, m is the number of

basis functions, g, are the coefficients that need to be
found. Radial basis functions are defined as follows:

o (x) = g(py — %), pr € RY.

Function g(+) and the centers of the basis func-
tions p, are selected according to the specifics of a
particular problem [23].

One of the main issues in the numerical solution
of HJBI is that the functions V(x) in (6) are almost
always non-smooth [24, 25]. That’s why it requires
the use of an excessively large number of basis func-
tions to approximate with acceptable accuracy. From
a practical point of view, this circumstance makes
methods based on radial basis functions inapplicable
for the analysis of systems in which the control object
is described by even a low order equations. In order to
find solutions, it is necessary to take into account the
boundary conditions (6), which complicate the struc-
ture solution and calculation process of a; in (7).

To avoid such difficulties, this paper introduces a
special set of basis functions, for which, when exer-
cised, the boundary conditions V(0) = 0 in (6) will
be satisfied automatically. The final non-smooth so-
lution will be formed by several smooth surfaces. An
overview of the proposed functions is given below:

Fig. 1. Example of a set of basis functions on the plane

S(x) = fb; {L] 0; GJ =X o >0, (8)
i=1

max
b,i () is the Bezier spline of order /, and r,,,, defines
the radius of the region in which the solution is
sought. The paper furthermore uses

1
0; () = (%ﬁj“z, pi=10<pu<l,
as a function ¢,(+), although there may be another
option. For certainty we will assume that o (x/r) = 0
for r = 0. Parameter p allows to change the shape
of @;(+): as p increases, the region in which ()
is significantly different from zero and vice versa.
Represented Bezier spline b,é(°) in the form of the
Bernstein polynomial (8) can be rewritten as follows

amzfiW%[’]%F}
i=1j=0 ‘max r
Bl(z) = sz(l )l
SN = ) '

Thus, the construction of smooth surfaces tends
to calculate the coefficients a,.j . Note that if we take
a? =0 (for all i =1, ..., m), then S(0) = 0. There-
fore, when using functions (9) as an approximation
of the solution (6), the condition V(0) = 0 in (6)
will be satisfied automatically, without introducing
special restrictions. In the next section, functions of
the form (9) will be used to construct smooth sec-
tions of the value function. Fig. 1 shows a graphical
representation of the proposed functions, where, for
convenience, ¢;(*) and @,(+) are located on circles
of different radius.

(©)

3. Transformation into a switching system

It follows directly from the equation (6) that the
optimal control u and the worst perturbation w can
only take boundary values, since the quality criteri-
on (5) does not depend explicitly on u, w. Therefore,
the entire domain Q in which the solution of the
equation (6) is sought can be divided into subdo-
mains Q%” with both constant control and pertur-
bation. When the system trajectory moves from one
subdomain to another, # and w switch instantly. As
will be shown below with numerical examples, the
solution in each Q%” can be approximated with high
accuracy using the surface (9).

If the boundaries Q%? are known, the search for
the value function can be reduced to the problem of
solving a system of linear equations. However, it is
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generally scarcely possible to determine Q%? without
solving the HJBI. In fact, the task of synthesizing the
optimal ACS is reduced to the following question:
"In which areas of the phase space of the system do
these or other values of control act?" In this regard,
we use the results of the theory of differential games
with switching strategies to construct the solution (6).

It was proved in [26, 27] that the solution V{7, x)
of partial differential equations (3) can be obtained
as the limit

HmV*b(t,x) = V(t,x),

where V,(t,x) = [Vn“’b (¢,x)] is a continuous matrix
function, which is the viscosity solution of the system

min ot ox
max b 5 =0;
Ma’ [Vn](t, X)— Vna’ (ta X)
Ma,b[Vn] (t) x) - VnaYb(t’ X)
VT, x) = h(x);

MW 1(t,x) = min{V &0 (2, x) + v, };
a+a

V(x| Ha,b[, v, x)]

(10)
M IV, 1(1,x) = rgabX{V,,“”5 (%)~ 1, )

H*(t,x, p) = p, F(t,x,a,b) + L(t, x,a,b);
acU,cU,beW,cW.

Here v,, p, are the costs for switching between dif-
ferent controls ¢ and perturbations b, which tend to
zero as n — oo. Finite sets U,, W, cover the initial sets
of controls and perturbations, and as » increases, the
coverage should become more and more dense. Since
u, w take only boundary values in the task described,
the discretization of the sets U, W occurs naturally.
Therefore, U, and W, consist of 27 and 29 elements
and, consequently, are independent of ». If a solution
(10) is found, then V,(z, x) is the lower value function
of the differential game with payoff functional

T
J(xg,u(*),w()) = IL(I, x(t),u(t), w(t))dt+
0
+ /’l(X(T)) + Na(')Yﬂ - Nb(')rna

in which N,.), Ny is understood as the number of
control and disturbance switches in the interval [0, 7.

Despite the fact that to solve (10) it is neces-
sary to calculate 27" functions V,**(¢,x) , this ap-
proach has certain advantages over direct computa-
tion of W(z, x) in (3). Indeed, the dependence on the
gradient of V¢, x) in (3) is non-linear, moreover,

in many practical cases it is not smooth, and (3)
is neither convex nor concave in oV (t,x)/o0x. At
the same time, in (10) 8Vn"’b (t,x)/0x enter linearly.
As will be shown in the next section, it allows to
compute V,(#, x) by the sequential solving systems
of linear equations. Thus, there are 2 main assets in
favor of using (10) instead of (3): discreteness of the
control and disturbances sets also as simplifying the
procedure of calculating the value function.

4. Formation of the optimization problem

On the time interval [0, 7], we introduce M + 1
uniformly distributed discrete values 1), < ... 1,44 <
<1 <1y <. <71 with 1y = 7, and 15, = 0. We
also discretize the state space X = RY using N (not
necessarily structured) points x; € X. Then, using
implicit Euler scheme, we will search for the solu-
tion (10) in the following form:

a,b a,b 0 Vii’lb j ab
Vel —AtH*? | t,x, L=y® (1D
"/ ox 43,
where

Vel =min| Ve ,,min{fd’f + vn} ;
l+§,j I+E,J a+a 1+5,j

7e - max [Vi”;b, max{V; - un}}; (12)
430 e

VP =V e, x ), Ve = h(x)).

In this work, the values of V,‘il” ; and 8V,‘jl” ;/0x

are proposed to be approximated by using the func-
tion S(x) from (9). By taking the total number of
coefficients for the basis functions in (9) as K, and
also setting M > K, we conclude that (11) is a lin-
ear equations system. Since it is overdetermined, its
solution must be sought in the least squares sense.

Thus, the transition from ¢, to #;;; consists of two
stages. At the first stage, the values V,-f’j’-b used in
(12) serve to calculate Z?ﬁ /.- The coefficients for
the basis functions in (9) are determined at the sec-
ond stage, while solving the linear equations system
(11). When this procedure complete for all t;, we
obtain a solution on the interval [0, T].

Now we will consider how this technique can
be used to solve the stationary HJBI equation that
arises in a differential game on an infinite time in-
terval. To do this, it is necessary to conduct a series
of numerical experiments, gradually increasing 7.
If, starting from some moment 7 > T, the value
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function stabilizes at the initial moment of time, i.e.
aV,;"b (0, x)/0t takes small values, then we can take

V(x)= min[ml?x Vn”’b(tM,x)] (13)

Note, that the function V(x) and its gradient can
be calculated not only at points x;, but also at any
other points x € X without additional interpolation.
Indeed, the functions V,*’(t,,,x) are represented
in the form (9) and the basis functions coefficients
occur when (11) solved. If it is possible to obtain
complete information about the state vector x for
some control object at each moment of time, then
the function (13) can be used directly on-board de-
vices to synthesize optimal control laws.

In this way, the synthesis method of the optimal
stabilizing controller consists of the following steps:

1. Equations of the system are written in the
form (1);

2. Desired quality criterion (5) is selected;

3. Radius of the region r,,,, in which the solution
is sought (6), the number of basis functions, and
the parameter u, which determines the shape of the
basis functions, are specified;

4. Value function (13) is searched while solving
the optimization problem described in this section;

5. If "(x) = 0 for x = 0, then the control law u(x)
from (5) is stabilizing and optimal with respect to
the selected quality criterion.

The examples of using this method are presented
below.

5. Numerical experiments

Consider an ACS with a parametrically perturbed
object from [12], which structure is shown in Fig. 2.

Dynamic equations of the presented system have
the following form:

% = Ax + b,0(c ,,1) + b,w(t)o,,;

L1
T, T, 0
A=| 0 0 0|b,=|0]|
0o o L 1
T T,
0 X
b, =|1],x=|x,[; (14)
0 X3
G, =—X|, O, =—X; +X3;
5;<@<5§,1=5i<w(r)<53=3.
p

If the controller is linear, then ¢(c ,,7) =k,c,,
8; <k, < Sf). If the controller is fuzzy, then
¢(c 1) determines the nonlinearity in the chan-
nel of the P-controller that satisfies the sector con-
straints 6;, 85,. The quality criterion is chosen in
the form (5) with L(x) = x12 + x22 + x32. It character-
izes accumulated deviation of the system state and
zero equilibrium point.

Next, we calculate the values of the selected qual-
ity criterion for three different types of P-controller:
linear, fuzzy P-controller from [12] (its characteris-
tics are demonstrated in Fig. 3), and controller with
the control law £(x) = k,(x)o),, 6}0 <k,(x) < 83,. The
coefficient k,(x) of third controller is determined by
complete information about the state vector.

The results of the calculation with the initial
conditions x;(0) = 5, x;(0) = x3(0) = 0 are summa-

Value of the quality criterion for different types of controllers

Controller Type LC FC FIC
Controller Parameters =5 k,= 8, =0.1 8, =2.0 8, =0.1 8, =2.0 8, =2.0
2 2 2 2 2

§2=5.3 §2=6.2 82=5.3 82=6.2 52 =8.0

Criterion Value 15.5 217.2 4.9 55 1.3 2.3 2.2

P-controller Control object
______________________________________ ]
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Fig. 2. ACS with a parametrically disturbed object
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Fig. 3. Characteristics of the fuzzy P-controller for 8}, =0.1,
82=5.3 (a) and 5}, =2.0, 32=6.2 (b)

rized in Table (LC — linear controller, FC — fuzzy
controller, FIC — controller with full information).

The rapid growth of the quality criterion J with
an increase of k, of the LC indicates the proximity
to the stability boundary. Already at k, = 7.3, the
system is unstable (in this case, the value of the
selected quality criterion tends to infinity). A FC
with non-linear characteristics from [12] shows
significantly lower values of J compared to the linear
controller. However, really interesting results are
associated with FIC. According to the same sector
constraints as for the FC, the values of the criterion
are 4 times lower for 6; =0.1, Sf, =5.3 and
2.4 times lower for 6}) =2.0, 65, =6.2. Moreover,

if the possibilities of increasing the upper boundary
of the sector 6?, without changing 6},), 81,82 are
exhausted for the FC, then this is not the case for
FIC, because in the last experiment the value of 85,
was increased to 8.0, and the level of Jwas even lower
than those of the controller with 65, = 6.2. Note that
for k, =8.0, the system with LC is unstable, i.e. at
certain moments in time, the FIC switches to an
unstable mode to improve quality index. The upper
limit of change in the non-stationary parameter w(f)
can also be increased. Even with 82 =9, the value
of J is only 3.1, which is lower than the linear and
fuzzy P-controllers for 82 = 3.

Determination of the worst parametric distur-
bances w'(f) in the system is another possible appli-
cation of the proposed method. It allows to obtain
information about the quality and stability of ACS
in the most adverse events (a worst-case scenario).
In most cases it is impossible to get analytic form
of w'(f) and numerical algorithms must be applied.
Fig. 4, a presents an example of ACS with a linear
controller (k, = 7.0) and an object, in which the
parameter w(f) changes in the worst way (based on
our method).

As can be seen from the analysis of Fig. 4, a,
strong oscillations are observed in the system. It
indicates a system’s proximity to the stability
boundary and is completely coherent with [11],
where this estimation was obtained independently
on the basis of Lyapunov spline functions. In order
to make sure that this disturbance is really the worst,
another numerical method of optimal control will
be applied [28]. It is a direct collocation method
which reduces optimal control problem to nonlinear
programming task. Since this work studies system
on infinite time interval, sufficiently large process
end time (¢, = 100) for numerical direct collocation
method is chosen. It makes it possible to compare
two processes on shorten start period ¢ € [0, 10].
The results of algorithm [28] are given in Fig. 4, b.
They are similar to those in Fig. 4, a, and so,
founded parametric disturbance is the worst. In
contrast with our method, the resulting disturbance
is given in time-dependent form (open loop form).
This means that for different initial condition x(0)
direct collocation algorithm must be run again. Qur
method leads to feedback form of disturbance and
only an approximation of the value function V(x) is
needed, what can be done once for a given system.

All experiments were done on two core 1.8 GHz
CPU computer with 4 GB RAM. Average time
of V(x) approximation for the example in this
section is 76.5 s and it is much faster than direct
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gorithms. First, it requires a full
information about object state
vector x. In most cases this in-
formation can be obtained with a
help of special sensors (for speci-
fied objects). Second, it requires
enough onboard memory size to
handle approximated value func-
tion. Third, it requires gradient

—X3

computation of approximated
value function at point x for
every new time step. For 3-di-
mensional system (14) the ap-

proximation of V(x) uses under
10 KB of memory and evalu-
ation of gradient takes around
0.005 s. Nonetheless, it must be
noted that these values depend
on system dimension and will
grow rapidly with an order of
control object.

-1 )

-of [0

t 6. Conclusion
8 10~
- - This paper proposes a meth-
| od for synthesizing ACS for
t 1 parametrically disturbed ob-
8 70 1 jects. It is shown that the sta-

4]

Fig. 4. Transient process in the system with a linear P-controller and the worst parameter

change: proposed method (a), direct collocation method (b)

collocation algorithm which average time is 1704.6 s.
Such difference can be explained in several ways.
As mentioned above, the end time of process 7
must be taken large enough, and all this time w(?)
switches instantly between two boundary values.
The same type of problem (bang-bang optimal
control problem) is one of the hardest to solve in
practical optimal control theory. To deal with a high
number of switches, direct collocation algorithms
need to subdivide time interval into many parts
and precisely detect points of switching, what take
a lot of computational resources. However, direct
collocation algorithms do not suffer from "curse of
dimensionality" and for high order systems it is still
the only way to estimate the worst disturbances.
Since used computer is comparable with mod-
ern onboard systems for mobile robots and medium
sized drones, it is interesting to discuss some aspects
of physical implementations of proposed control al-

i

bilizing control law can be ob-
tained in the form of feedback
based on the value function of
a particular differential game.
The value function is calcu-
lated by solving the nonlinear Hamilton-Jacobi-
Bellman-Isaacs equation. Since, in general, there is
no analytical solution, a numerical procedure that
approximates the value function was suggested. For
this purpose, a novel set of basis functions was de-
veloped and methods of the theory of differential
games with switching strategies were used to sim-
plify the numerical procedure.

Suggested method allows to analyze asymptotic
stability of parametric perturbed systems with high
precision which is confirmed by Lyapunov functions.
Also, it permits to find the worst parameters change
in the system and thus helps to get guaranteed esti-
mation of quality index. In comparison with direct
collocation method it is more than 20 times faster.
Meshfree nature of the proposed method leads to the
efficient value function approximation in the sense of
required memory size and gradient evaluation time.
However, this method is not "curse of dimensiona-
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lity" free, so achieved performance takes place only
for low order systems.

Consequently, future works will be concentrated
on studying higher order cases and improvements
which need to be done to handle this type of
problems. At the same time, physical implementation
of control system for trajectory motion of mobile
robots and quadcopters will be realized. One of the
main features of this approach is the necessity of
real-time full information about object state vector.
On the one hand it will increase complexity of the
system hardware, but on the other may give an
advantage to the state of the art methods.
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