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СИСТЕМНЫЙ АНАЛИЗ,
УПРАВЛЕНИЕ И ОБРАБОТКА ИНФОРМАЦИИ

Целью данной статьи является обоснование нового метода синтеза стабилизирующих регуляторов для параме-
трически возмущенных систем, которые часто встречаются в мобильной робототехнике, беспилотных летательных 
аппаратах, исполнительных приводах с нестационарными параметрами, интеллектуальных системах управления 
с самообучением и т. д. Из-за высокой сложности и неопределенности этих систем классические ПИД регуляторы 

Abstract

The objective of this paper was to justify the new synthesis method of stabilizing controller for parametrically perturbed systems, 
which often appear in mobile robots, aircrafts, engineering objects with non-stationary parameters, intellectual control systems with a 
self-learning etc. Due to the high complexity and uncertainty of these systems, the classical PID controllers are not applicable and so 
a full information about the object state vector is used. Controllers obtained in this way  al low to minimize the integral quality criterion 
of the system with the worst case parameter perturbation. For this purpose, the methods of differential games and switching systems 
theories were applied. Control laws are calculated by using the value function of the corresponding differential game, which can be 
obtained by solving the Hamilton-Jacobi-Bellman-Isaacs equations. A special set of basic functions was developed to approximate the 
value function and satisfy the boundary conditions. Finally, controller synthesis for a specific object with a nonstationary parameter 
is given. It significantly exceeds both the linear and fuzzy controllers in terms of quality. In the task of analyzing system qualitative 
characteristics under the worst parametric perturbation, our results are compared to the modern direct collocation methods of optimal 
control. With the same accuracy, proposed method is two times faster for low order systems. To verify that developed controllers can 
be employed in real time applications, we present computational time and memory usage in the end of the article.

Keywords: differential games, Hamilton-Jacobi-Bellman-Isaacs equations, value function, switching systems, absolute stability, 
Lyapunov functions, implicit Euler scheme, fuzzy controllers
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Introduction

In recent decades artificial intelligence methods 
have proven their efficiency in the tasks of complex 
dynamical objects control [1, 2]. One example of their 
successful application are non-stationary systems ex-
posed to various uncertainty factors [3, 4]. These types 
of systems are used to describe aircrafts [5], mobile 
robots [6—8], actuators [9], etc. However, the choice 
of the structure and parameters of an intelligent con-
troller as well as the analysis of the stability of the 
overall system is still a difficult and not fully resolved 
problem. A possible solution is the theory of absolute 
stability, which allows to determine the admissible 
sectors in which the nonlinear characteristics of the 
intelligent controller should be located.

Numerical algorithm proposed in Berdnikov 
(2018) studies can be used for constructing Lyapu-
nov spline functions to solve the problem of absolute 
stability of the system with several nonstationary ele-
ments [10]. Later, this algorithm was used to construct 
guaranteed stability regions of automatic control sys-
tem (ACS) with fuzzy controllers and parametrically 
perturbed objects [11, 12]. Even though the synthe-
sized systems are stable, two questions still need to 
be answered. The first one is related to the choice of 
a fuzzy controller specific characteristics in a stable 
sector. The second one concerns determination of the 
object’s worst-case parameters changing.

To avoid these drawbacks, this paper proposes 
the new algorithm for synthesizing nonlinear con-
troller characteristics of ACS with parametrically 
perturbed objects. Its main idea is to use the theory 
of differential games for switching systems. In this 
context, a two-player differential game is consid-
ered. One of the players tries to minimize a pre-
selected quality criterion by using control, while the 

other tries to maximize it using parametric pertur-
bation. Approximation of the game value function is 
the result of the algorithm. If there is complete in-
formation about the state vector of the system, this 
approach allows to synthesize optimal control laws 
in the form of feedbacks. On the other hand, the 
analysis of differential game permits the formation 
of the worst-possible perturbations in the system. 
It leads to the guaranteed estimation of the sys-
tem quality criterion, which means it can’t be worse 
with any other possible parameters perturbations.

This work is structured in the following way. Sec-
tion 1 includes a detailed task description, the aim 
of which is to resolve a Hamilton-Jacobi-Bellman-
Isaacs partial differential equation (HJBI). Section 2
introduces the special set of basis functions which 
help to approximate solution of the HJBI equations. 
Distinguishing characteristic of these functions is 
that the boundary condition is always satisfied. In 
Section 3, to simplify the process of finding a solu-
tion, methods of differential games with switching 
strategies are applied. Section 4 develops a numeri-
cal algorithm for constructing an approximate solu-
tion of HJBI equations for a switching system. Sec-
tion 5 gives an analysis of the specific system with 
parametrically perturbed object. Discussion of the 
results and conclusion are presented in Section 6.

1. Problem statement

Consider a system described by equations

 ( , , , ) ( ) ( ) ( ) ,u w
dx

F t x u w f x g x u g x w
dt

= = + +  (1)

where т
1 2( , , , )dx x x x= …  — d-dimensional column 

vector of state variables, т
1 2( , , , )pu u u u= …  — 

оказываются неприменимы, поэтому в данной работе предлагается использовать полную информацию о векторе 
состояния объекта. Полученные таким образом регуляторы позволяют минимизировать интегральный критерий 
качества системы при наихудшем возмущении ее параметров. Для этого были применены методы дифференциальных 
игр и теории переключаемых систем. Законы управления вычисляются на основе функции цены соответствующей 
дифференциальной игры, которая может быть получена путем решения уравнений Гамильтона—Якоби—Беллмана—
Айзекса. Для аппроксимации функции цены и удовлетворения граничных условий был разработан специальный набор 
базисных функций. В последнем разделе приведен пример синтеза регулятора для конкретного объекта с нестацио-
нарным параметром. По качеству переходных процессов он значительно превосходит линейные и нечеткие регулято-
ры. В задаче анализа качественных характеристик системы при действии наихудших параметрических возмущений 
наши результаты сравниваются с современными численными методами оптимального управления. При той же точ-
ности предлагаемый метод работает в два раза быстрее для систем невысокого порядка. Чтобы убедиться, что 
разработанные регуляторы можно использовать в реальных системах, в конце статьи приводится время вычислений 
управляющих воздействий и объем использованной памяти ЭВМ.

Ключевые слова: дифференциальные игры, уравнения Гамильтона—Якоби—Беллмана—Айзекса, функция цены, 
переключаемые системы управления, абсолютная устойчивость, функции Ляпунова, неявная схема Эйлера, нечеткие 
регуляторы
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p-dimensional column vector of controls, 
т

2( , , , )qw w w…  — q-dimensional column vector of 
disturbance; f(x), gu(x), gw(x) — matrix functions of 
the corresponding dimensions. The restrictions on 
the vectors of control and disturbances u ∈ U, w ∈ W 
(2) are imposed.

 
1 2

1 2

{ | };

{ | }.

p
i i i

q
j j j

U u u u u

W w w w w

= ∈ − ∞ < < +∞

= ∈ − ∞ < < +∞

�

�

m m

m m
 (2)

This work examines the issue of synthesis of sta-
bilizing optimal controller for parametrically per-
turbed objects. In contrast to [11, 12], this type of 
controller should minimize some pre-selected qua-
lity criterion J. Obviously, it will be different for 
various perturbations of a given class w(t). In this 
regard, it is advisable to tune the controller, assum-
ing that the system has some "worst" w*(t) perturba-
tion for the chosen criterion, i.e. the perturbation is 
maximizing J among all other w(t) (in the context 
of the concept of antisipative strategies [13]).

It is well known from the theory of differential 
games [14] that if the quality criterion is presented 
as the sum of the integral component and the ter-
minal cost:

 0
0

0

( , (•), (•)) ( , , ) � ( ( )),

� � (0),

T

J x u w L x u w dt h x T

x x

= +

=

∫

the solution of the partial differential equation (3) 
V(t, x),

min max , ( , , , ) ( , , , )

0,� � � ( , ) ( ),

u U w W

V V
F t x u w L t x u w

t x

V T x h x

∈ ∈

∂ ∂⎧ ⎫+ + =⎨ ⎬∂ ∂⎩ ⎭
= =

 (3)

when the additional condition of the saddle point is 
fulfilled (Isaac’s condition)

 
min max ( , (•), (•))

max min{ ( , (•), (•))},

{ }
u U w W

w W u U

J x u w

J x u w
∈ ∈

∈ ∈

=

=

is the value function of the game. Moreover, if V(t, x) 
known, the optimal control and the worst perturbation 
can be found in the form of feedback (4).

( )
( )

( ) ( )

,

,

arg min max , , , , , .
u U w W

u t x

w t x

V
F x u w L x u w

x∈ ∈

⎛ ⎞
∈⎜ ⎟

⎝ ⎠
⎧ ∂ ⎫⎛ ⎞∈ +⎨ ⎬⎜ ⎟∂⎝ ⎠⎩ ⎭

 (4)

Next, we will consider quality criteria which op-
erates on an infinite time interval and do not ex-
plicitly depends on control and disturbance, namely:

 0
0

( , (•), (•)) ( ) ,�J x u w L x dt
∞

= ∫  (5)

where L(x) > 0 for x ≠ 0 and L(0) = 0. It was shown 
in [15, 16] that if V(x) is a solution of the equation

 
( ) ( )min max , , , , , 0,

(0) 0,

u U w W

V
F x u w L x u w

x

V

∈ ∈

⎧ ∂ ⎫⎛ ⎞ + =⎨ ⎬⎜ ⎟∂⎝ ⎠⎩ ⎭
=

 (6)

and if V(x) > 0, / ( / , ( , , )) 0dV dt V x F x u w= ∂ ∂ <  for 
x ≠ 0, and the Isaac’s condition is satisfied, then V(x) 
is the Lyapunov function establishing the asymptotic 
stability of the system. Moreover, in some region of the 
origin V(x) is the value function of the corresponding 
differential game, and the optimal controls and the 
worst perturbations are obtained in the form of 
feedback by the formula (4). Note that in our case, 
the Isaac’s condition is satisfied, since system (1) is 
divided by control and perturbation, and the quality 
criterion does not at all depends on u and w [17].

Thus, calculation of V(x) in (6) permits to solve the 
problem completely. This paper proposes a numerical 
method for approximation of the solutions of HJBI 
equations, which contains the following main steps:

1) Construction of a set of basis functions for which 
the boundary condition V(0) = 0 is always satisfied;

2) Transformation of the initial system into a 
switching one. This step will simplify the subsequent 
procedure of the numerical search for a solution (6);

3) Development of numerical algorithm for ap-
proximating the value function V(x) of a switching 
system.

In the following sections, the steps set out above 
will be discussed.

2. Basis Functions Construction

There are several numerical methods of approxi-
mation for the solutions of nonlinear partial differ-
ential equations in current literature. They include 
finite-difference methods [18], finite-elements me-
thods [19], Galerkin methods [20], methods based 
on radial basis functions (RBF) [21] and others [see, 
for example, 22]. We will consider the last one. The 
main advantage of using radial basis functions is that 
it is not necessary to define a dense structured space 
grid, at the nodes of which the desired solution is 
approximated. This circumstance makes it possible 
to better cope with the so-called „curse of dimensio-
nality," namely that the computational resources and 
computer memory exponentially grow with increa-
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sing dimension d. In fact, classical numerical me-
thods are not applicable for the dimension d l 4 of 
the space on non-specialized computers.

In RBF-based methods, the solution is searched 
in the form

 
1

( ) ( ),
m

k k
k

S x a x
=

= ϕ∑  (7)

where ϕk(x) — are basis functions, m is the number of 
basis functions, ak are the coefficients that need to be 
found. Radial basis functions are defined as follows:

 ( ) ( ),� � � .d
k k kx g p x pϕ = ∈− �  

Function g(•) and the centers of the basis func-
tions pk are selected according to the specifics of a 
particular problem [23].

One of the main issues in the numerical solution 
of HJBI is that the functions V(x) in (6) are almost 
always non-smooth [24, 25]. That’s why it requires 
the use of an excessively large number of basis func-
tions to approximate with acceptable accuracy. From 
a practical point of view, this circumstance makes 
methods based on radial basis functions inapplicable 
for the analysis of systems in which the control object 
is described by even a low order equations. In order to 
find solutions, it is necessary to take into account the 
boundary conditions (6), which complicate the struc-
ture solution and calculation process of ak in (7).

To avoid such difficulties, this paper introduces a 
special set of basis functions, for which, when exer-
cised, the boundary conditions V(0) = 0 in (6) will 
be satisfied automatically. The final non-smooth so-
lution will be formed by several smooth surfaces. An 
overview of the proposed functions is given below:

 max
1 max

( ) , , 0
m

l
i i

i

r x
S x b r x r

r r=

⎛ ⎞ ⎛ ⎞= ϕ = >⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

∑ , (8)

(•)l
kb  is the Bezier spline of order l, and rmax defines 

the radius of the region in which the solution is 
sought. The paper furthermore uses

 
2

1
, 1

( ) , � � � 1, � � �0 1,
2
i

i i
y p

y pμ+⎛ ⎞ϕ = = < μ <⎜ ⎟
⎝ ⎠

as a function ϕi(•), although there may be another 
option. For certainty we will assume that ϕi(x/r) = 0
for r = 0. Parameter μ allows to change the shape 
of ϕi(•): as μ increases, the region in which ϕi(•) 
is significantly different from zero and vice versa. 
Represented Bezier spline (•)l

kb  in the form of the 
Bernstein polynomial (8) can be rewritten as follows

 1 0 max

( )

( ) ;

!
( ) 1

!( ) !
.

m l
j l

j ii
i j

l j l j
j

r x
S x a B

r r

l
B z z z

j l j

= =

−

⎛ ⎞ ⎛ ⎞= ϕ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

= −
−

∑ ∑
 (9)

Thus, the construction of smooth surfaces tends 
to calculate the coefficients .jia  Note that if we take 

0 0ia =  (for all i = 1, ..., m), then S(0) = 0. There-
fore, when using functions (9) as an approximation 
of the solution (6), the condition V(0) = 0 in (6) 
will be satisfied automatically, without introducing 
special restrictions. In the next section, functions of 
the form (9) will be used to construct smooth sec-
tions of the value function. Fig. 1 shows a graphical 
representation of the proposed functions, where, for 
convenience, ϕ1(•) and ϕ2(•) are located on circles 
of different radius.

3. Transformation into a switching system

It follows directly from the equation (6) that the 
optimal control u and the worst perturbation w can 
only take boundary values, since the quality criteri-
on (5) does not depend explicitly on u, w. Therefore, 
the entire domain Ω in which the solution of the 
equation (6) is sought can be divided into subdo-
mains Ωa,b with both constant control and pertur-
bation. When the system trajectory moves from one 
subdomain to another, u and w switch instantly. As 
will be shown below with numerical examples, the 
solution in each Ωa,b can be approximated with high 
accuracy using the surface (9).

If the boundaries Ωa,b are known, the search for 
the value function can be reduced to the problem of 
solving a system of linear equations. However, it is Fig. 1. Example of a set of basis functions on the plane
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generally scarcely possible to determine Ωa,b without 
solving the HJBI. In fact, the task of synthesizing the 
optimal ACS is reduced to the following question: 
"In which areas of the phase space of the system do 
these or other values of control act?" In this regard, 
we use the results of the theory of differential games 
with switching strategies to construct the solution (6).

It was proved in [26, 27] that the solution V(t, x) 
of partial differential equations (3) can be obtained 
as the limit

 ,lim , ( , )( ,)a b
n

n
V t x V t x

→∞
=

where ,( , ) [ ( , )]a b
n nV t x V t x=  is a continuous matrix 

function, which is the viscosity solution of the system

, ,
,

, ,

,
,

,

, ,

,

( ) ( )

[ ]( ) ( )

[ ]( ) ( )

( )

[ ]( ) { ( ) }

[ ](

, ,
, , ,

min ,
max 0;

, ,

, ,

, ( );

, min , ;

, ) ma

a b a b
a bn n

a b a b
n n

a b
a b n n

a

a b
n

a b b
n n n

a

a b n

a

V t x V t x
H t x

t x

M V t x V t x

M V t x V t x

V T x h x

M V t x V t x

M V t x

≠

⎧ ⎫⎧ ⎫⎛ ⎞∂ ∂
+⎪ ⎪⎪ ⎪⎜ ⎟⎜ ⎟∂ ∂⎪ ⎪⎨ ⎬⎝ ⎠⎪ ⎪ =⎨ ⎬⎪ ⎪

−⎪ ⎪⎩ ⎭
⎪ ⎪
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=

= + γ

=

�
�

,

,

{ ( ) }x , ;

, , , ( , , , ) ( , , , );

, .

( )

a
n n

b
a b

n n

b

b
V t x

H t x p p F t x a b L t x a b

a U U b W W

≠
− μ

= +
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�

�

Here γn, μn are the costs for switching between dif-
ferent controls a and perturbations b, which tend to 
zero as n → ∞. Finite sets Un, Wn cover the initial sets 
of controls and perturbations, and as n increases, the 
coverage should become more and more dense. Since 
u, w take only boundary values in the task described, 
the discretization of the sets U, W occurs naturally. 
Therefore, Un and Wn consist of 2p and 2q elements 
and, consequently, are independent of n. If a solution 
(10) is found, then Vn(t, x) is the lower value function 
of the differential game with payoff functional

 
( )0

0

(•) (•)

( , (•), (•)) , ( ), ( ), ( ) �

( ( )) ,

T

a n b n

J x u w L t x t u t w t dt

h x T N N

= +

+ + γ − τ

∫

in which Na(•), Nb(•) is understood as the number of 
control and disturbance switches in the interval [0, T].

Despite the fact that to solve (10) it is neces-
sary to calculate 2(p+q) functions , ( , )a b

nV t x , this ap-
proach has certain advantages over direct computa-
tion of V(t, x) in (3). Indeed, the dependence on the 
gradient of V(t, x) in (3) is non-linear, moreover, 

in many practical cases it is not smooth, and (3) 
is neither convex nor concave in ( , )/V t x x∂ ∂ . At 
the same time, in (10) , ( , )/a b

nV t x x∂ ∂  enter linearly. 
As will be shown in the next section, it allows to 
compute Vn(t, x) by the sequential solving systems 
of linear equations. Thus, there are 2 main assets in 
favor of using (10) instead of (3): discreteness of the 
control and disturbances sets also as simplifying the 
procedure of calculating the value function.

4. Formation of the optimization problem

On the time interval [0, T], we introduce M + 1 
uniformly distributed discrete values τM < ... τi+1 <
< τi < τi–1 < ... < τ0, with τ0 = T, and τM = 0. We 
also discretize the state space dX ⊂ �  using N (not 
necessarily structured) points xj ∈ X. Then, using 
implicit Euler scheme, we will search for the solu-
tion (10) in the following form:

 
,
1, ,, ,

1, 1
,

2

, , ,
a b
i j a ba b a b

i j
i j

V
V tH t x V

x
+

+
+

⎛ ⎞∂
⎜ ⎟− Δ =
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 (11)

where

 

, , ,
1 1 1
, , ,

2 2 2

, , ,
, ,1

,
2

, , ,
, 0,

min ,min ;

m { }ax ,max ;

, ,� � � ( ).( )

a b a b b
n

ai j i j i j

a b a b a
i j i j n

bi j

a b a b a b
i j n i j jj

a

a

b

b

V V V

V V V

V V t x V h x

≠+ + +

≠+

⎡ ⎤⎧ ⎫⎪ ⎪⎢ ⎥= + γ⎨ ⎬
⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦
⎡ ⎤= − μ⎢ ⎥⎣ ⎦

= =

�
�

�

�
 (12)

In this work, the values of ,
1,

a b
i jV +  and ,

1, /a b
i jV x+∂ ∂  

are proposed to be approximated by using the func-
tion S(x) from (9). By taking the total number of 
coefficients for the basis functions in (9) as K, and 
also setting M > K, we conclude that (11) is a lin-
ear equations system. Since it is overdetermined, its 
solution must be sought in the least squares sense.

Thus, the transition from ti to ti+1 consists of two 
stages. At the first stage, the values ,

,
a b
i jV  used in 

(12) serve to calculate ,
1/2, .a b

i jV +  The coefficients for 
the basis functions in (9) are determined at the sec-
ond stage, while solving the linear equations system 
(11). When this procedure complete for all τi, we 
obtain a solution on the interval [0, T].

Now we will consider how this technique can 
be used to solve the stationary HJBI equation that 
arises in a differential game on an infinite time in-
terval. To do this, it is necessary to conduct a series 
of numerical experiments, gradually increasing T. 
If, starting from some moment T > Tc, the value 

(10)
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function stabilizes at the initial moment of time, i.e. 
, 0,( /)a b

nV x t∂ ∂  takes small values, then we can take

 ( ) , ( )min max , .a b
n M

a b
V x V t x⎡ ⎤= ⎢ ⎥⎣ ⎦

 (13)

Note, that the function V(x) and its gradient can 
be calculated not only at points xj, but also at any 
other points x ∈ X without additional interpolation. 
Indeed, the functions ( ), ,a b

n MV t x  are represented 
in the form (9) and the basis functions coefficients 
occur when (11) solved. If it is possible to obtain 
complete information about the state vector x for 
some control object at each moment of time, then 
the function (13) can be used directly on-board de-
vices to synthesize optimal control laws.

In this way, the synthesis method of the optimal 
stabilizing controller consists of the following steps:

1. Equations of the system are written in the 
form (1);

2. Desired quality criterion (5) is selected;
3. Radius of the region rmax in which the solution 

is sought (6), the number of basis functions, and 
the parameter μ, which determines the shape of the 
basis functions, are specified;

4. Value function (13) is searched while solving 
the optimization problem described in this section;

5. If V(x) = 0 for x ≠ 0, then the control law u(x) 
from (5) is stabilizing and optimal with respect to 
the selected quality criterion.

The examples of using this method are presented 
below.

5. Numerical experiments

Consider an ACS with a parametrically perturbed 
object from [12], which structure is shown in Fig. 2.

Dynamic equations of the presented system have 
the following form:
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If the controller is linear, then ( , ) ,p p pt kϕ σ = σ  
1 2 .�p p pkδ δm m  If the controller is fuzzy, then 
( , )p tϕ σ  determines the nonlinearity in the chan-

nel of the P-controller that satisfies the sector con-
straints 1 2, .p pδ δ  The quality criterion is chosen in 
the form (5) with 2 2 2

1 2 3) .(L x x x x= + +  It character-
izes accumulated deviation of the system state and 
zero equilibrium point.

Next, we calculate the values of the selected qual-
ity criterion for three different types of P-controller: 
linear, fuzzy P-controller from [12] (its characteris-
tics are demonstrated in Fig. 3), and controller with 
the control law ξ(x) = kp(x)σp, 

1 2� ( ) .p p pk xδ δm m  The 
coefficient kp(x) of third controller is determined by 
complete information about the state vector.

The results of the calculation with the initial 
conditions x1(0) = 5, x1(0) = x3(0) = 0 are summa-

Fig. 2. ACS with a parametrically disturbed object

Value of the quality criterion for different types of controllers

Controller Type LC FC FIC

Controller Parameters kp = 5 kp = 7 1

2

0.1

5.3

p

p

δ =

δ =

1

2

2.0

6.2

p

p

δ =

δ =

1

2

0.1

5.3

p

p

δ =

δ =

1

2

2.0

6.2

p

p

δ =

δ =

1

2

2.0

8.0

p

p

δ =

δ =

Criterion Value 15.5 217.2 4.9 5.5 1.3 2.3 2.2
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rized in Table (LC — linear controller, FC — fuzzy 
controller, FIC — controller with full information).

The rapid growth of the quality criterion J with 
an increase of kp of the LC indicates the proximity 
to the stability boundary. Already at kp = 7.3, the 
system is unstable (in this case, the value of the 
selected quality criterion tends to infinity). A FC 
with non-linear characteristics from [12] shows 
significantly lower values of J compared to the linear 
controller. However, really interesting results are 
associated with FIC. According to the same sector 
constraints as for the FC, the values of the criterion 
are 4 times lower for 1 0.1,pδ =  2 5.3pδ =  and
2.4 times lower for 1 2.0,pδ =  2 6.2.pδ =  Moreover, 

if the possibilities of increasing the upper boundary 
of the sector 2

pδ  without changing 1 1 2, ,p w wδ δ δ  are 
exhausted for the FC, then this is not the case for 
FIC, because in the last experiment the value of 2

pδ  
was increased to 8.0, and the level of J was even lower 
than those of the controller with 2 6.2.pδ =  Note that 
for 8.0,pk =  the system with LC is unstable, i.e. at 
certain moments in time, the FIC switches to an 
unstable mode to improve quality index. The upper 
limit of change in the non-stationary parameter w(t) 
can also be increased. Even with 2 9,wδ =  the value 
of J is only 3.1, which is lower than the linear and 
fuzzy P-controllers for 2 3.wδ =

Determination of the worst parametric distur-
bances w*(t) in the system is another possible appli-
cation of the proposed method. It allows to obtain 
information about the quality and stability of ACS 
in the most adverse events (a worst-case scenario). 
In most cases it is impossible to get analytic form 
of w*(t) and numerical algorithms must be applied. 
Fig. 4, a presents an example of ACS with a linear 
controller (kp = 7.0) and an object, in which the 
parameter w(t) changes in the worst way (based on 
our method).

As can be seen from the analysis of Fig. 4, a, 
strong oscillations are observed in the system. It 
indicates a system’s proximity to the stability 
boundary and is completely coherent with [11], 
where this estimation was obtained independently 
on the basis of Lyapunov spline functions. In order 
to make sure that this disturbance is really the worst, 
another numerical method of optimal control will 
be applied [28]. It is a direct collocation method 
which reduces optimal control problem to nonlinear 
programming task. Since this work studies system 
on infinite time interval, sufficiently large process 
end time (tf = 100) for numerical direct collocation 
method is chosen. It makes it possible to compare 
two processes on shorten start period t ∈ [0, 10]. 
The results of algorithm [28] are given in Fig. 4, b. 
They are similar to those in Fig. 4, a, and so, 
founded parametric disturbance is the worst. In 
contrast with our method, the resulting disturbance 
is given in time-dependent form (open loop form). 
This means that for different initial condition x(0) 
direct collocation algorithm must be run again. Our 
method leads to feedback form of disturbance and 
only an approximation of the value function V(x) is 
needed, what can be done once for a given system.

All experiments were done on two core 1.8 GHz 
CPU computer with 4 GB RAM. Average time 
of V(x) approximation for the example in this 
section is 76.5 s and it is much faster than direct 

Fig. 3. Characteristics of the fuzzy P-controller for 1 = 0.1,pd  
2 = 5.3d p  (a) and 1 = 2.0,d p  2 = 6.2d p  (b)
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collocation algorithm which average time is 1704.6 s.
Such difference can be explained in several ways. 
As mentioned above, the end time of process tf 
must be taken large enough, and all this time w(t) 
switches instantly between two boundary values. 
The same type of problem (bang-bang optimal 
control problem) is one of the hardest to solve in 
practical optimal control theory. To deal with a high 
number of switches, direct collocation algorithms 
need to subdivide time interval into many parts 
and precisely detect points of switching, what take 
a lot of computational resources. However, direct 
collocation algorithms do not suffer from "curse of 
dimensionality" and for high order systems it is still 
the only way to estimate the worst disturbances.

Since used computer is comparable with mod-
ern onboard systems for mobile robots and medium 
sized drones, it is interesting to discuss some aspects 
of physical implementations of proposed control al-

gorithms. First, it requires a full 
information about object state 
vector x. In most cases this in-
formation can be obtained with a 
help of special sensors (for speci-
fied objects). Second, it requires 
enough onboard memory size to 
handle approximated value func-
tion. Third, it requires gradient 
computation of approximated 
value function at point x for 
every new time step. For 3-di-
mensional system (14) the ap-
proximation of V(x) uses under 
10 KB of memory and evalu-
ation of gradient takes around 
0.005 s. Nonetheless, it must be 
noted that these values depend 
on system dimension and will 
grow rapidly with an order of 
control object.

6. Conclusion

This paper proposes a meth-
od for synthesizing ACS for 
parametrically disturbed ob-
jects. It is shown that the sta-
bilizing control law can be ob-
tained in the form of feedback 
based on the value function of 
a particular differential game. 
The value function is calcu-

lated by solving the nonlinear Hamilton-Jacobi-
Bellman-Isaacs equation. Since, in general, there is 
no analytical solution, a numerical procedure that 
approximates the value function was suggested. For 
this purpose, a novel set of basis functions was de-
veloped and methods of the theory of differential 
games with switching strategies were used to sim-
plify the numerical procedure.

Suggested method allows to analyze asymptotic 
stability of parametric perturbed systems with high 
precision which is confirmed by Lyapunov functions. 
Also, it permits to find the worst parameters change 
in the system and thus helps to get guaranteed esti-
mation of quality index. In comparison with direct 
collocation method it is more than 20 times faster. 
Meshfree nature of the proposed method leads to the 
efficient value function approximation in the sense of 
required memory size and gradient evaluation time. 
However, this method is not "curse of dimensiona-

Fig. 4. Transient process in the system with a linear P-controller and the worst parameter 
change: proposed method (a), direct collocation method (b)
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lity" free, so achieved performance takes place only 
for low order systems.

Consequently, future works will be concentrated 
on studying higher order cases and improvements 
which need to be done to handle this type of 
problems. At the same time, physical implementation 
of control system for trajectory motion of mobile 
robots and quadcopters will be realized. One of the 
main features of this approach is the necessity of 
real-time full information about object state vector. 
On the one hand it will increase complexity of the 
system hardware, but on the other may give an 
advantage to the state of the art methods.
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