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A Step-by-Step Algorithm for Finding the Optimal Strategy
for the Behavior of a Group of Robots

Abstract

The solution of the multi-criteria problem, which includes the distribution of objectives, the planning of trajectories and the
optimization of energy consumption, is considered in the realization of the collective interaction of robots. It is proposed to use a
genetic algorithm according to the chosen conditions (constraints) and optimality criteria to find the best strategy for group behavior.
The considerable difficulty in choosing how to control a team of autonomous mobile robots represents the distribution of tasks among
agents that operate under conditions of parametric and information uncertainty, possess "modest” hardware, power and functionality.
Therefore, the implementation of a multi-stage search for an optimal solution requires a specialized approach that takes into account the
whole range of dynamic parameters, allowing for real-time target correction and degradation of robots until they fail. The basis of the
proposed neurogenetic algorithm is a new algorithm for calculating the fitness function, in which the results of the neural network method
of trajectory planning for a group of robots are used, as well as information about the initial charge of the batteries of robotic agents of
the collective, the energy consumption of each agent and the preliminary estimation of the energy required by some agent to perform
the individual tasks available to it. In order to ensure an acceptable performance of the algorithm and given the high dynamism of the
external environment, it was decided to limit the search for solutions to only one step (the next working beat of the collective). The paper
presents the results of the simulation of the task of finding the optimal behavior of robots, the algorithm of calculation of the specialized
fitness function and the options of step-by-step search of the global strategy of distribution of tasks, which make it possible to increase
the efficiency of the use of the team of robots due to the guaranteed production of the result while minimizing the total time of completion
of all the tasks, as well as to increase the working time of the team due to the correct energy consumption.
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AnNropuT™M nowwaroBoro nomcka
ONTUManbHOI CTpaTerumn rpynnoBoro noBeaeHUs po6oros’

Paccmampusaemces pewenue mnocokpumepuanrsholi 3adauu, exaiovaruee pacnpedeierue yeaeli, NAAHUPoO8anue mpaekx-
moputi U ONMUMU3AYUI PACX00d IHepeUU, NPU Peaiu3ayul KoileKmueHo20 e3aumodeicmeus pobomos. [isa noucka onmu-
MAAbHOU cmpamezuu epynnoeo2o nogedeHus npediazaemcs UCnoAb308AMb 2eHeMU1eCKUL a120PUmMM 6 COOMEEeMCMEULU C bl-
OpauHbIMU YCAOBUAMU (02PAHUYMEHUAMU) U KPUMEPUAMU ONMUMAAbHOCMU.

'Pagora moaaepxaHa B paMmkax roczaganust Ne0246-2018-007.3
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CyuecmeeHHy0 CA0JICHOCIYb NPU 8bl60pe CHOCO0068 YNPABAeHUS 2DYNNOU A8MOHOMHbIX MOOUAbHBIX POOGOMOG npedcmasasiem
pacnpedenenue 3a0a4 mexncoy azeHmamu, Komopuvie 0elicmeyiom 6 ycA08UaX napamempuvecKol U UHGHoOpMayUuoHHOU Heonpe-
deaenHocmetl, obaadaom "CKpOMHLIMU" ANNAPAMHBIMU, SHEePeeMUUECKUMU U PYHKUUOHAAbHBIMU 803MOdCHOCmAMU. [loamomy
peanu3ayus MHO2ONApaAmMempu4ecko20 HOUCKA ONMUMAAbHO20 peuleHUus mpebyem Cneyuairu3uposanHo2o0 nooxooda, yuumi-
6anuwez0 6ecb KOMNAEKC OUHAMUYECKUX NAPaAMempos, JonycKkaruee0 KoppeKyuio yeiell 8 peaibHom macuimabe epemenu u
deepadayuro pobomos enioms 00 UX 6b1X00a U3 CMpPos.

OcHOB0UI npedaazaemozo HelpoeeHemu4ecKk020 alcopuUmma s6ASemcs HOB8bll an20pumm pacuema Qumuecc-QyHKyuu,
6 KOMOPOM UCHOAb3YIOMCS Pe3YAbmambl Helpocemegoeo Memooa NAAGHUPOBAHUS MPAeKmMOpUll 041 epynnsl pobomos, a mak-
Jce uHQopmayus 0 HaUaabHoM 3apsde bamapeil poOOMoE — a2eHmos KOALeKMUBA, IHeP2ONoOmpetieHUU KaXc0020 acenma u
npedsapumenvHas OyeHKAa IHeP203ampam, HeoOX00UMbIX aeeHmy HA 6bINOAHEHUEe QOCMYNHbIX eMy 0moeabHulX 3adanui. Jlas
obecneueHus npuemaemMol nPoU3800UMeNbHOCMU AA0PUMMA U C YHemOM 8biCOK020 OUHAMUZMA BHEUIHe20 OKPYICeHUs Obla0
NPUHAMO pelleHUe 02PAHUYUMbBCS NOUCKOM DeUleHUll MmoAbKo Ha 00UuH wae (caedyowut pabouui makm Koaitekmuea). B pa-
Oome npugoodsmcs pe3yabmamsl MOOeAUPOBAHUs 3a0a4u NOUCKA ONMUMAAbHOU cmpameeuu nogedeHus po6omos, areopumm
pacyema cneyuairu3uposaHHol Gumuecc-QYHKYuUU U 6apuanmsl NOWA206020 NOUCKA 2100aAbHOU cmpameauu pacnpedeieHus
3a0anuil, Komopule n036045H0M NOGbICUMYb IPDEKMUGHOCMb UCHOAb30BAHUS KOANEKMUBA POOOMOE 3a cHem 2apaHMupo6aH-
H020 NOAYHeHUs pe3yabmam Npu MUHUMUBAUUU CYMMAPHO20 8PeMeHU GbINOAHEHUS 6CeX NOCMABAEHHbIX 3A0aHUll, a makKice
yeeauuums gpems pabomol KOAAEKMUBA 3a CHem KOPPEKMHO20 pacxoda SHepeuu.

Karwueevie caosa: cmpameeus epynnogoeco noeedeﬁuﬂ, Koiairekmue poﬁomos, Heﬁpoeeﬂemuuecxud aieopumm, qbumHecc—

@yHKyUs, pacnpedenenue 3aday

Introduction

The current target areas for mobile robotic sys-
tems are modern production lines, environmental
monitoring, handling and storage, inspection and
investigation of hard-to-reach/hazardous environ-
ments, threatening human life, etc.

The most effective use of mobile robots in these
domains is when they are used collectively when
they come together to solve a single target. How-
ever, the following issues of group management re-
lated to the organization of the collective interac-
tion of robots arise:

1) Distribution goals and tasks to robots, taking
into account the nature of the objectives, function-
ality and environment of each robot;

2) The planning of the trajectories and the al-
location of subspaces for each robot, taking into
account possible conflicts in operation;

3) Optimization of energy consumption of indi-
vidual robots when moving through working space
and performing functional tasks in order to increase
the efficiency of work of the whole team.

Therefore, the problem of group control of mobile
robots with the definition of a multi-criteria prob-
lem, which includes the distribution of objectives,
planning and optimization of energy consumption,
is topical. Analysis of current research has shown
that insufficient attention has been paid to group
control of robots with integrated performance op-
timization at both the strategic, tactical and energy
levels. Quite often, research offers its own method
of solving only a private problem, which is usually
either not applicable or requires considerable refine-
ment in solving a complex problem. Consider in
more detail some of the methods of solving private
problems encountered in group control of mobile
robots.

Among the many publications on task distribu-
tion are: centralized distribution algorithms [1, 2],
multi-agent RTS control algorithms under uncer-
tainty, using neural networks [3], fuzzy logic [4] and
dynamic programming algorithms [5], augmented
and virtual reality technology [6], potential fields
[7], cognitive adaptive method [8]. In some cases,
heterogeneous groups of robots act as distribution
algorithms target and treat the problem as a com-
plex combinatorial problem [9, 10]. In addition,
methods of relaxation of Lagrange [11] and ant al-
gorithms [12] are often used. It should be noted
that a large part of the algorithms presented in the
above-mentioned publications are designed to solve
target allocation problems in a particular case where
the number of robots in the working space corre-
sponds to the number of objectives.

The problem of planning optimal routes for mo-
bile robots, which is closely related to operational
planning, has been addressed in numerous stud-
ies, but as a separate application. Currently known
solutions can be divided into two main classes —
precision and approximation [13]. Among the latter
are various ways of implementing intelligent plan-
ning algorithms constructed using neural networks,
fuzzy or genetic algorithms (GA) [14]. Intelligent
methods show the best results in solving planning
problems that are difficult to implement on-board
computing systems of mobile robots using classical
breakthrough or potential algorithms.

Optimization of energy consumption in the col-
lective use of robots and trajectories/movements of
individual robots has been repeatedly raised by re-
searchers [15—20]. Most often, energy efficiency im-
provements were achieved through hardware modifi-
cations: the use of adjustable speed drives and special
software with the emulation of a mobile robot in a
virtual model based on analytical data and working
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in real time [15] or the application of parallel elastic
elements to reduce energy consumption in a two-
legged walking robot Sandia [16].

Interesting approach in work [17] where the algo-
rithm of optimization of energy consumption in the
swarm of feeding robots is presented, which imple-
ments rules of adaptation of robots based on infor-
mation about environment and quality of commu-
nication. Reduction of electrical consumption and
minimization of energy consumption are achieved
in a group of robots by using a computer cluster, on
which the software code is realized for rapid calcula-
tion of movement of robots in a group, simulation of
movements in a labyrinth [18, 19]. Variants of evo-
Iutionary algorithms for optimizing the energy con-
sumption of a group of robots during their movement
and information exchange are also known [20].

According to the results of the survey, at present,
there is no uniform method for the group control
of the mobile robot team to solve the problems of
target distribution, route planning and energy op-
timization as a single complex task. As the number
of robots and the complexity of the task assigned to
the team increase exponentially, the time to make
decisions grows. Therefore, it is important to devel-
op non-resource-based planning and control algo-
rithms that take into account the specific capabili-
ties of mobile robot on-board computing systems.

This work proposes a strategy for control a het-
erogeneous group of mobile robots with optimal
performance parameters at strategic, tactical and
energy levels.

Setting the goal of optimizing
a group behavior of robots

A working field of size NXM, containing n robots
and m tasks, coordinates of robots (x,, Vi, i € [1, n]),
location coordinates of tasks (x; Y Jjell,m]) is
considered. The goal of the team of robots is to
perform tasks located in the field. Some field cells
have an identifier for the incoming tasks (V; vector).
Robots have a class identifier (F;), with only one
robot and/or one task in a single field cell.

Robots are divided into classes that uniquely de-
fine the group of tasks it can perform, the energy
consumption of the robot in different modes, and
the speed of movement. There are three modes/
states of the robot: sleep (waiting for the task),
movement, and implementation of the task, each
with its own energy consumption (for the i-robot —
WSL WM v W,»WR respectively). Each robot has an
1n1t1al charge (P ).

Tasks are divided into several classes. Each class
has its own energy consumption (W'®) — the en-

ergy that the robot must use to complete a given
class of task. A robot can perform the same or a
lower class task, but only if it has enough energy to
execute it.

Given the above characteristics and constraints,
it is necessary to synthesize an algorithm to find the
optimal distribution of tasks among available ro-
bots, while minimizing the energy and time spent.

The optimality criteria used are:

1) total energy consumption:

0,(2) =W:(2) > r;lei;l;

2) implementation time of all tasks:

(I)Z(Z) = tmax(z) - min;

s

3) a number tasks in a queue:

$3(Z) = Noy (2) - rzpeizn.

Here z is a vector of problem numbers, each
element of which z;, i = 1,n defines the problem for
the i-robot in the next step. The domain of valid 7
vector values forms a set Z.

The three-criteria problem is to choose the opti-
mal distribution of tasks among available robots: to
find the values of variable parameters 7 , which with-
in the limit fulfill all the above conditions 1)—3). The
vector optimality criterion J(¢,(7),$,(Z),$3(2)) is
defined on the set Z, and the value of each of the
private optimality criteria must be minimized ¢,(2),
i=1n

J: f?eizn(d)l(Z),d)z(Z)ad)s(Z))-

To find a solution, it is proposed to use GA ac-
cording to the listed conditions (limitations) and op-
timum criteria. At the same time, the synthesis of
GA and the coding of the decision are carried out
according to the method presented in other authors’
papers, where the applicability of GA for solving
such a class of problems is proved [21] and the best
results according to two criteria are obtained [22] but
the motion trajectory module worked autonomously.

The main changes have been made in the algo-
rithm for forming a fitness function for GA with
parallel operation of the neural network system of
trajectory planning, which makes it possible to ob-
tain optimal routes for each of the evaluated work-
plans, So the synthesized algorithm can be conside-
red a class of hybrid, neurogenetic.

The search for the optimal strategy is carried out
for the multi-criteria task on one step in time (dis-
crete), taking into account the energy consumption,
the trajectory of the robots’ motion and the time
to complete the tasks. The optimal distribution of
tasks is determined by the initial charge of the bat-
tery, the energy consumption of each robot and the
energy spent on individual tasks. To plan trajecto-
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Fig. 1. Basic fitness function algorithm

ries of motion, a neural network algorithm is used
to find the optimal set of paths of the whole group
of robots from starting points to target coordinates
(problems) [23]. The GA is used as the basic ap-
proach for solving the multi-criteria problem. Each
mode of operation and class of operation (problem)
is characterised by their level of energy consump-
tion, so the use of GA makes it possible to solve a
multi-criteria optimization problem taking into ac-
count the integral criterion of efficiency, taking into
account also the hardware realizable possibility of
energy redistribution between robots. The classical
search for such solutions relates to the multi-criteria
optimization problem, so the main purpose of the
synthesized algorithm is to find a minimum on a
set of allowable combinations of the distribution and
the use of the GA with the chosen conditions and
optimality criteria will allow for an acceptable time
for on-board computing systems to obtain a prob-
lem distribution close to optimal in parallel with the
search for energy-efficient trajectories.

The following algorithm has been synthesized to
calculate the fitness function:

1. Chromosome decoding. Genes are decrypted
into problem numbers for each robot.

2. Compute the trajectory of robots to chromosome-
encoded targets using a neural network algorithm.

Determination of the position of B
Calculating the number of robots at the time of completion tasks, energy consumption)
outstanding tasks N for the j-th step of the task and the time spent on
processing current tasks Definition of performance
. ; l criteria for the j-th step —‘
S the task list for this step T
Cycle by the number of robots h 4
( involved (i) Exclusion of a task that was
l — | completed from the general list
Calculation of performance criteria of tasks
by values at each step Calculation of costs for sleep mode
v for the i-th robot
Displaying information 1 Job counter increment j=j+1
onsznu:'zg 12;:1 s Calculation of .the path traveled by | | py .-|
the i-th robot
End @

3. Calculates the parameter W5 for the estimated
task combination.

4. Calculate the time taken by robots to complete
assigned tasks. Select the maximum time.

5. Calculates the parameter N, for the estima-
ted problem combination as the difference between
the number of all tasks m and the number of non-
zero elements in the vector 7 .

6. Output of the derived fitness function vector
for the individual in question 7 .

The algorithm of the developed fitness function,
taking into account the characteristics of the type
of GA used, as well as the problem itself in the form
of a flowchart, is shown in Fig. 1.

Finding the best one-step strategy for robots

In order to prove the functionality and efficiency
of the neurogenetic algorithm, computer simula-
tions are conducted on the generated set of variants
of the distribution of robots and problems in the
working field. Two variants of the simulated situa-
tions are shown below, the same for the baseline is
only the size of operating field 10x10.

Example 1. One step strategy. There is a group of
three robots that needs to do six tasks. The robots
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are located in the cells of the working field with co-
ordinates: {6,2} a robot of Class 3, {4,10} — Class 1
and {1,7} — Class 2; the energy reserve is equal to
40 units. The tasks are located on the working field
with coordinates 1, 2 and 6 — {8,3}, {1,6} and {2,7},
the task 2 of Class 3 — {5,4}, the tasks 3 of Class 4
and 5 — {4,9} and {2,10}. The energy consumption
of the robots is given in table 1. The time required
to complete the tasks is: for the robot of class 1,
{3,—,—}; for the robot of class 2, {5,4,—}; for the ro-
bot of class 3, {5,7,2}.

The location of the robots and tasks in the work-
ing field is shown in Fig. 2.

The results of the one-step task distribution
simulation are presented in table 2.

The minimum number of outstanding tasks is
three, which is determined by the difference between
the number of robots and the number of tasks (6-3).

I I
I I
I I
| 1 l
I I
IE RY |
I ) I
3 L |
i 4 T i
i 3 l
IR |
|

"7 P® | T® :
I |
I I
| 9 o :
110 7o PO |
I I

Fig. 2. Location of robots and tasks in the workfield

Table 1
Robot energy consumption
MV P
Robot | WL, | K'% | My unitof | g gty e
.. | unit/unit | length/unit .
class en. unit . class | en. unit
of length of time
1 2,1 0,7 100 1 3,2
2 1,1 1,2 200 2,8
3 1,7 0,9 150 3 5,8
Table 2
Decisions received

Decison, Robot, Ne Ws, Tmax> N

No en. unit | unit of time out

1 2 3

1 0 0 0 0 0 6
2 0 0 2 3,68 2,0 5
3 3 0 2 8,16 12,4 4
4 1 0 2 8,36 10,9 4
5 3 6 2 12,74 19,8 3
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Fig. 4. Movement dynamics of robots for solution 5 (example 1)

Fig. 3 and Fig. 4 show the trajectories of the robots
and the velocity (dynamics) of movement on the
working field for the fifth solution — the solution
with the maximum number of completed tasks.

Step-by-step search
for a global assignment strategy

Since the initial task is to find a distribution
strategy for all tasks, we use the resulting algorithm
to find a common strategy for the behavior of
the robots in achieving the goal. We will find the
optimal solution for assigning tasks to each of the
next steps until all the tasks have been completed
to do this. Step refers to the time from the starting
point to the end of the task to be solved.

According to the original assignment, the task
is removed after its completion, which leads to a
change in the structure of the task: one of the tasks
is eliminated, and the robot performing it is ready
to proceed to the next.
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Therefore, after the task has been completed
by the robot, it is necessary to restart the optimal
strategy algorithm for the next step. Due to the
discreteness of the field and the specificity of the
task, the following points should be taken into
account when switching to the following iteration
of optimization:

1) a robot which, at the time of restart, is located at
an intermediate point (moves between the grid nodes)
is considered to be in the nearest traversed node;

2) the implemented task is considered complete
(removed from the list of tasks) and transparent (not
an obstacle) to robots;

3) one of the best three-criteria solutions must
be chosen.

To select optimal solutions from the group, either
an integral criterion is used or a command is expected
from the decision maker. In order to automate the

(1)
§

~(3)
T,

(1)
P,

Fig. 5. Location of robots, tasks and obstacles in the field of work
for example 2

calculations, the choice of the fipal r---------- - - - - - - - - - - - - - - - - ——-- -~ "
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the following criteria:

— select a solution with a mini-
mum execution time among the de-

cisions with a minimum number of

unresolved tasks;

B Tasks

— if two solutions meet this condi-

- & Start

tion, the one that uses less energy is
selected.
This rule may vary depending on

=0 Robot 2
=0 Robot 3

the global tasks.

., + Translation points

We note that the algorithm is re-
peated with the original population

obtained by the decision in the previ-

ous step.
The proposed algorithm also takes
into account the situation where a

|
|
|
|
|
|
|
I
I
I
|
|
|
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|
|
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|
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I
I
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|
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That is, if a robot has started a task,

and the results of calculating the next | g

step show that it is more efficient to

redirect it to another task, it stops | 70 o
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70 2

doing the task. At the same time, the 60

60 | o

time required to complete a task is

reduced by the time that the robot has ' 50

3 50

already spent on it.
Example 2. The complete problem

Xe-
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o

%,
o,

40 | &

is solved, i.e. the robots have to
complete all the tasks on the working

30
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.
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field and there are static obstacles

20
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(black areas in Fig. 5). 10 /I
The solution in the form of
trajectories and displacement dynamics
is presented in Fig. 6 and Fig. 7. The
total time of the task was 62.1 units

of time and the robots spend part of

5

i 10 /

Fig. 7. Dynamics of robots for example 2
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their time doing roadblocks. We note that despite
the obstacles, the algorithm allows the robots to be
reallocated according to the respective tasks with the
required efficiency.

This is a consequence of the introduction of the
following specific actions into the algorithm for
finding the optimal strategy:

1. In the next step robot coordinates shall be
rounded to the nearest cell (to be achieved by
reducing the grid size);

2. The solution obtained for each of the steps
modifies the task list (the list contains only the
remaining tasks) for the robots.

A further modification of the proposed approach
consists in improving the strategy algorithm by 2—5
steps forward for each time frame, which will allow
for a deeper analysis of the initial and intermediate
states and a more efficient solution to the problem
as a whole but it would require a lot of computing
resources.

Conclusion

The work synthesizes the algorithm of step-by-
step search of optimal behavior of the group of
robots. The proposed algorithm is based on: a three-
parameter adaptability function, the GA, a neural
network algorithm for finding disjoint pathways for
a group of robots and an algorithm for step-by-step
solving of a common problem.

Using the developed algorithm, different source
data generated strategies for a group of robots that
minimized the sum of task time. Similarly, solutions
can be obtained by minimizing the total energy
consumption of a group of robots or maximizing
the number of tasks completed in a limited time.

As part of further work, it is planned to implement
the algorithm of finding the optimal strategy with
several steps missing.
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