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Energy-Based Adaptive Oscillation Control of the Electromechanical Systems

Abstract

The swing-up control of the electromechanical systems is considered. Electromechanical system is the cascade system. The input
subsystem is a mechanical plant. The output subsystem is the actuator which dynamics cannot be neglected in particular oscillation
control problem. The energy-based objective function is used to design the energy efficient virtual control law of output subsystem.
The control objectives are achieving the mechanical subsystem’s reference energy and boundedness of closed-loop cascade system
trajectories. In parametric uncertainty, both energy and the control objective depends on unknown parameters of a mechanical sub-
system. That complicates the design procedure. The modified Speed bi-gradient method (SBGM) to identify unknown parameters,
achieve a desired energy and provide boundedness of the trajectories is proposed. Modifications of SBGM are the introduction of the
output subsystem tunable model, and indirect adaptive control design. Swing-up control is calculated based on current estimation per-
formed by the adaptation loop that is without preliminary identification. The design procedure, conditions of applicability and stability
analysis are presented. The proposed method is used to design the swing-up control of pendulum under parametric uncertainty. The
experimental results comfirming the performance of a closed-loop system are demonstrated.

Keywords: speed-gradient method, speed-bigradient method, adaptive control, sliding mode control, Hamiltonian systems,
stability, Lyapunov function
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ApantunBHoe ynpaBrneHue CBOOOAHbLIMMU KONedaHnsIMun
ANeKTpomMexaHn4eCKnxX cucremam

Paccmampueaemcs 3adava ynpasienus Kosebanuamu ssekmpomexanuveckux cucmem. Ilpu cunmese yuumoieaemes Ka-
CKaOHbll xapakmep cucmemol. BxoOnvim kackadom seasemcsa mexanuueckas nodcucmema, 8biX00HbIM — NPUBOD, OUHAMUKA
KOmMOopo2o 0Ka3zvleaem cyujecmeennoe eAusHUe Ha Kauecmeo ynpasienus. Hcnoavsoeanue snepeemuyeckoi yenesoli (yHk-
Yuu no3eoasem CUHMeE3UPOBAMb IHepeemu1ecku IQppekmusHvle ar20pummbl GUPMYALbHO20 YAPABGACHUS BbIXOOHbIM KACKA-
dom. Ileavio ynpasaenus seasemcs docmucerue 3a0aHH020 YPOBHsL IHePUU MEeXAHUYECKOU NOOCUCMEMOU U 02PAHUYEeHHOCHb
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udeHmuukayuu napamempos.

mpaekmopui 3aMKHymou cucmembsl. Hauboavuiyro c10icHOCmb 8bl3bi6aem ynpasieHue KoaeOaHusMU 8 YCA08UAX napamempu-
ueckoil HeonpeoeaeHHOCMU, M.K. 8 IMOM CAy4ae IHepeus CUCmeMbl U, Kak ciedcmeue, yeneas QYHKYUS 3a8Ucam om Heus-
secmHbvlx napamempos.llpedraecaemes moduguxkayus memooa cKopocmuoeo buepadueHma nymem 66e0erHus HACMPAUeaemol
MoOdenu 8biX00H020 KACKAOA U CUHMe3a HenpsaMOo20 adanmuenozo ynpaerenus. [losyuaemvie 6 npoyecce adanmayuu oyeHKu
napamempog ucnoabzyemcs 041 opmuposanusn ynpagienus 6e3 npedsapumenvroi uoenmupurkayuu. Onucvieaemes memo-
Juka cunmesa, YcA08Us NPUMEHUMOCMU AN20PUMMO8 U 000CHO8bl8aemcs docmuiceHue yeau ynpaeaenus. Illpedaaecaemas
MemoouKa Ucnoabzyemcs 04 CUHMe3a aNeopumma YnpagieHus MAsmHUKOM ¢ yyemom Ounamuku npueoda. Ilpueodamcs
pe3yabmamol cmeH008bIX UCNbIMAHUI, OeMOHCMPUpYoujue 0ocmudiceHue 3a0aHHbIX XapaKmepucmuk Koae6anuil u mo4HoCmb

Karoueenie caoea: memoo ckopocmuoz2o epaduenma, memoo OUCKOPOCMHO20 2padueHma, a0anmueroe ynpasienue, CKoAb3-
AuUe pexcumMbl, 2aMUAbBIOHOBb! CLUCIEMbl, YCMOUYUeocms, Qyuxyus JAanynosa

Introduction

Control of nonlinear oscillatory systems problem
arises in mechanics, optics, and other fields. Energy-
based control design approach is based on specifying
the desired plant energy level instead of trajectory.
Speed-gradient (SG) method is used to design swing-
up control law with energy objective function [1]. It
ensures the control goal is achieved with arbitrary
small control action. The energy-based design ap-
proach successfully applied for stabilization of unsta-
ble equilibrium of various pendulum systems, such
as two-link pendulum (M. W. Spong [2]), reaction
wheel pendulum (Andrievskiy B. R [3], M. W. Spong
[4], Bobtsov A. A. [5]), cart-poly system (S. C. Peters
[6]) etc. [7—9].

In the oscillation control, the drive motor dynam-
ics usually has significant influence on control per-
formance. Then problem is formulated as swing-up
control of the cascade system consisting a mechanical
subsystem and a drive motor. The control objectives
are achieving the mechanical subsystem reference en-
ergy and boundedness of closed-loop cascade system
trajectories, that is the partial stability problem.

Energy-based control in the parametric uncer-
tainties is awkward because of both an energy and
a control objective accordingly depend on unknown
parameters of a mechanical subsystem. Adaptive
swing-up control of nonlinear cascade system is pro-
posed by D. Efimov [10]. Unlike SBGM, D. Efi-
mov relies on backstepping method to design the
closed-loop control law. It requires to calculate the
virtual control derivative. The adaptive filter is used
for adaptation of unknown parameters. Wherein the
closed-loop system dimension increases significantly.

The Sliding mode with tuning surface (SMTS)
method proposed by Myshlyayev is used to control
the cascade nonlinear systems in in the paramet-
ric uncertainties [11]. The method combines output
subsystem’s parameters adaptation, tuned virtual
control of output subsystem, and sliding mode con-

trol depending on tuned parameters. Later, SMTS
method was extended by smooth control law with
tuned surface, and was named speed bi-gradient
method (SBGM) [12].

The generalization of SBGM for control objec-
tive depending on unknown parameters [13] is con-
sidered. Modifications of SBGM are the introduc-
tion of the output subsystem tunable model, and in-
direct adaptive control design. The proposed design
approach ensures both the achievement the desired
energy, and the boundedness of system trajectories
in uncertainties.

The problem formulation of adaptive swing-up
control of cascade systems is given in Section 1. In
Section 2, SBGM for objective function depending
on unknown parameters is described. Conditions of
applicability and theorems justifying the achieve-
ment of control objective are presented. In Section 3,
the proposed method is applied to design swing-up
control of the pendulum with an actuator. The ex-
perimental results corfirming the performance of a
closed-loop system are demonstrated.

Problem formulation

Consider the affine cascade plant consisting of
output subsystems S, that is described in hamilto-
nian form (1) for convenience, and input subsystems
S, that is an actuator (2)

Sl: q.i — aH(Xl,X2:§)’ p; = _aH(Xl:Xb&),
op; 0g; (1)
i=L...,h h=mn-m)/2;
S):%;, =u, @)

where x; = col{q,p} e R"™, x, e R" is generalized
force, q=collq,....q,}, Pp=colip,...,p,} are
generalized coordinates and momenta, &< ZE is
a vector of unknown parameters, u € R™” is control,

MexaTpoHnKa, aBToMaTu3anus, ynpasjenue, Tom 21, Ne 7, 2020

413



H(X[,X,,8) = Hy(x;,&) + H|(x,,&)" x, is hamilto-
nian function, H((x;,&) is the internal hamiltonian
describing unforced motion of the output subsystem,
H,(x,,&) is the vector of interaction hamiltonians.

Assumption 1. The terms of hamiltonian function
that are H(x;,&), H,(x;,&) can be decomposed as
Hy(x,8) = F:.THO(Xl) and H,(x,8) = E..THl(X]),
where Hy(x;), H,(x;) are sensor matrices.

In many applications, it is possible to transform
the plant parameters to new ones & so that Assump-
tion 1 is valid.

Control objective is to design an adaptive control
law u ensuring both the boundedness of system tra-
jectories, and achievement the desired energy H-: by
a output subsystem.

Control design method

Introduce the objective function

O(x,,€) = 0,5(H(x,,8) - H.)?, ©))
and formalize the control objective
0(x,8) <A, for t>t. ()]

where #. is time to achieve control objective with the
specified accuracy Ay > 0.

Assumption 2. The first and the second partial
derivatives of H,(x,&), and H(x;,§) on x; are
bounded on set Q, ={x; : O(x;,&) < Ay} for some
A, >0 and VEeE.

An objective function (3) depend on unknown
parameters. Then SBGM can’t be directly applied.
Consider the modification of SBGM by introducing
the tunable model of an output subsystem to iden-
tify unknown parameters.

Divide the initial problem on two independent
subtasks that are

1. design control law u* of a cascade system (1),
(2) assuming that plant’s parameters are known;

2. design adaptation loop to identify output sub-
system’s parameters.

Closed-loop control law depends on tuned esti-
mations of parameters and doesn’t require prelimi-
nary identification.

Consider subtasks in details. Introduce the de-
viation from the tuned intersection of the manifolds
c=0as

©)

is the virtual control of output

O =X) — X9yjn>

where X5,
subsystem.

Subtask 1. Stage 1.1. Introduce the "ideal"
deviation from the intersection of the manifolds o*
assuming that plant’s parameters are known.

()

Design the "ideal" virtual control X, =
= X1, (X1,8) of output subsystem as SG in the
finite form

* *
G =X)5 =Xy

Xy (X1, €) = —vaxzvmw(xl,ﬁa(’*) (7)
where v > 0, w(x,,&,6") = 0(x,&) = (H, - H.) X
X [Hy,H" (x3,;, +o), [Hy, Hj] is the Poisson
bracket.

It is proven by A. Fradkov [1], an "ideal" virtual
control law (7) is bounded for any bounded initial
conditions, and it ensures the inequality

w(x;,&,0) =
= (Hy - H) [IHy B[ <-pp@  (8)

holds true almost everywhere, where p,(Q) is a
scalar continuous strictly growing function such as
po(Q) > 0, and py(0) = 0.

Stage 1.2. Design "ideal" control law u*, ensu-
ring the achievement a "ideal" intersection of the
manifolds ¢* = 0. Introduce the additional control
objective as

R(c*) <A, for t >, )

where

R(6*)=0,5¢""G", (10)
f. is time to achieve additional control objective
with the specified accuracy A, > 0.

Calculate the speed of change of the deviation of
the trajectory of control system from the intersection
of the manifolds ¢* = 0:

G =u (11)

Control law ensuring the achievement of an
additional control objective (9) is selected as SG
algorithm in the finite form.

Lok
— X virt

u =-y,0(x,0), (12)

where the vector-function @(x, o) satisfies the pseud-
gradient condition (pT(X,G*)Vu*p(xl,xz,ﬁ,c*,u*) >0,
where u(Xl,X2,§,G*,u*)=6*T6* is the speed of
change of (10) along the trajectories of (11). The
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typical forms of vector-function are either linear or
relay that are

(13)

(p(X,(')'*) = Vu*“(xlaxb E_,,G*,u*) = 6*:
o(X,6 ) = sign Vu*p(xl,xz,ﬁ,c*,u*) =signo . (14)

Theorem 1. Consider the closed-loop system
consisting of a plant (1), (2) assuming parameters are
known, "ideal" virtual control (7), and "ideal" control
(6), (12). Assume the X5, is locally bounded on its
arguments. Then all of the trajectories are bounded,
both the main (4) and additional (9) control objectives
are achieved. There exists Lyapunov function for
closed-loop system

V =0(x;,8)+ R(c"). 15)
Proof of theorem 1.
Calculate the speed of change of Lyapunov
function candidate (15) along the trajectory of

system (1), (2), (6), (7), (12)

V= (Hy - H*)[HoaHI]T(X;virt + G*) +
(16)

+ G*T(u* - X;virl) =
= w(x1,&,0) + 6 "M(X|) ~ 7,0 '9(X,5),

where n(x) = (Hy = H)[Ho, H{]= X5,

Consider two cases.

Case 1. Let ¢(x,6 ) =signo’ that s (14). Substi-
tute (14) to (16) V' = w(x;,&,0) + o m(x)) - 7,/lo"|
Then for y,, =|nll+v¢, v >0

V <w(x,,E,0) - 1olle’]| < 0. (17)

From (17), it follows, the both deviation

H,(x,,€) - H+ and o™ are bounded.

Consider problem of a convergence to th*e rr*lani—
fold in detail. From R(c ) =-y,llo |- X5,

1
+70, 7o >0, and ||o¥ =$\/§’

where Ym = “XZW'H
it follows

R<-Y0LJR.
V2

? dR "/0 ?
— <-—"X(dr. Conse-
&< 5l

quently R(7) < JR(O —#.

Since R(#) >0, and right side of the inequality
is a linear decreasing function, there exists 7., such

(18)

From (18), receive

that R(f) = 0 fro 7> 7., then o(f)=0 for ¢ > f..
Thereby control objective (9) is achieved in finite
time f..

Then for > f., from (16) and considering (8),
it follows

V<w<-py(0). (19)

From (19), according LaSalle’s invariance
principle, system trajectories converge either
to invariant set X, ={x;:H,(x,&)- H.=0},

that is control objective (4) is achieved, or to set
X, ={x,:[Hy,H;]=0}, that are equilibria of
the control plant (1) [1, 14, 15]. The set of initial
conditions which trajectories goes to equilibria for
has Lebesgue measure zero.

Case 2. Let ¢(x,6 ) =o  that is (13). Then from
(16) it follows

V =w(x,£0)+0 m(X;)—y,0 "6 <

: L, (0
<w(x,8,0) +[lo || [l = v,llo |

m > HTIIIS?II)” +v0, Yo > O,
inequality (17) is satisfied. Hence both ¢* and
Hy(x,,€) — H: are bounded.

Recall (20). Maximize on ||c*|| the last two terms:
)l = 2y,]le”ll = 0, 6" max = IMGDI/27
Substitute ||o ||, to (20) to receive the maximum
in the right side of the inequality

From (20), for

; ||'fl(X1)||2
V <w(x,&0) + . 2D
4 m
From (21) it follows, for any A =p,(Q) >0 and
2
¢ > 0, there exists y,,, so that "n‘(ti)” = A —¢ which
implies V < —¢. m
From (21) and wusing LaSalle’s invariance

principle, system trajecgories converge to the set
X; 1 w(xy,&,0) +”T]:L)" =0¢.

To proof that sys{nem trajectories converge to
invariant set X, UX, ={x;: Hy(x,§)-H:=0
or [Hy,H{]=0}, take into consideration the
assumption 2. The boundedness of second partial
derivatives of H,(x;,€), and H,(x,,&) implies the
boundedness of w(x;,&,0) and the boundedness
X5, accordingly. The control law u* is bounded
because of 6* is bounded. Since the right side of (11)
is bounded then & is also bounded. Consequently
V is also bounded which implies ¥ is uniformly
continuous. With the Barbalat’s lemma o* — 0
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as t — oo, and system trajectories converge either
to invariant set X, ={x,: H(x,§)—- H. =0},
that is control objective (4) is achieved, or to set
X, =1{x; :[Hy,H;] =0}, that are equilibria of the
control plant (1).

End of theorem 1 proof.

Subtask 2. Consider the output subsystem (1)
in parametric uncertainties. Design the indirect
adaptation law for bounded input x,. Introduce
the additional control objective that is the plant’s
parameters identification

limg =&,

t—ow

(22

where f;, is the vector of tunable parameters.
Introduce the tunable model of output subsystem

X+ =V, (23)
where X« e R"™™, v= V(xl,e,xz,é) is the input of
a tunable model to be designed, e = x| — X;.

Introduce the additional control objective with
respect to design of a input v

limQ,(e) > 0 npu f — oo, 24)
t—w
where local objective function
0,(e)=0,5¢"Pe, P=P7 >0. (25)

Note, the control function (25) doesn’t depend
on unknown parameters. Apply two stages of SBGM
to design adaptation law.

Stage 2.1. Design the ‘"ideal" input
v = v(x,,e,X,,&) of tunable model (23) to achieve
the control objective (24) assuming output system’s
parameters are known. Consider the error dynamics

é = Xl - Xl* =
=C0[{aH(q’p’§’X2), _aH(q,p,E,,Xz)}_v‘ (26)
op; 0q;

Select v* as

*
vV = V(XbeaXZs E,a) =

27
— Col{aH(q’p’g’XZ)’ _aH(q’pang2)}_A*e ( )
op; oq;

where A. is (n — m) X (n — m) Hurwitz matrix.
"Ideal” input (27) ensures achievement of addi-
tional control objective (24)

0, =e"PA.e < —,0,,

where p, =X pin(G)/A o (P) >0, X(*) is eigenvalue,
P=P7 >0, and G =G’ >0 satisfy the Lyapunov
equation PA + ATP = -G.

Stage 2.2. Replace the unknown parameters &
by tuned ones & in (27)

V(Xla €, Xy, E.,) =

£ £ 28
=col{aH(qapaEnX2),_aH(qapagaXZ)}_A*e' ( )
op; o4,

Design an adaptation loop by SG algorithm in
differential form

& =130, 29)
or
é ZI‘VACOI(aH(q’p’E'”Xz) _aH(qapa§JX2)]Pe,(30)
E op; aq;

where T =diag{y,,y,, ..., v, >0 is (/ X /) matrix, /
is number of tuned parameters.

Theorem 2. Consider the system consisting of
output subsystem S, (1) with bounded input x,,
tunable model (23) with input (28) and adaptation
loop (30). Additional control objectives (22) and
(24) are achieved. There exists Lyapunov function
V=0, +1 —§||1__|.

Proof of theorem 2.

Consider the speed of change of V, along the
trajectory of the closed-loop system (1), (13), (23)
(26), (28), (30):

VZ — eTP col{aH(q:p9§7X2) _aH(q’pJE.nXZ)}_
op; 0q;

—COI{aH(q,p’g,Xz), _aH(qap,ng2)}+A*eJ+
op; 0q;

FETr 1 E—£.) = ePAse + [—eTPvg x

X col aH(qaps§’X2), _6H(q,p,§,X2) +
op; oq;

+éTr*]é—§»

Taking (30) into account ¥, < e’ PA.e < -p,0,.
Consequently, all of the system (26), (28), (30) tra-
jectories are bounded.

From (28) and boundedness of e and x, tak-
ing into account, it follows the input v(xl,e,xz,é)
is bounded. Then é is bounded because of (26),
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boundedness of v(xl,e,xz,é) and assumption 2.
Consequently Vz <2e"PA.é is bounded which
implies that ¥, is uniformly continuous. With the
Barbalat’s lemma V2 — 0, as t » oo, hence e — 0,
t — oo, that is control objective (24) is achieved.

The boundedness of output subsystem’s (1) tra-
jectories follows from assumption 2. The bounded-
ness of the tunable model’s (23) trajectories follows
from x;» = x; — e.

If vector-function

®=vycol {amq, pEx) _oH@.p. g,x2)}

op; 0q;

is persistently exciting the additional control
objective (22) is achieved.

End of theorem 2 proof.

Note 1. The dimensions of tunable model (23)
can be reduced, if unknown parameters are includ-
ed only in part of equations of output subsystem (1).

Stage 3. Combine results of subtasks 1 and 2.
Consider system (1)-(2) in parametric uncertainties
with an adaptation law (30). Estimations of param-
eters calculated by an adaptation law are used in
virtual control in form (7)

X0 (X1,8) = =1, Vo w(x,E0), (D)

and accordingly both in the deviation from the
tuned intersection of the manifolds (5), and in
control law (12)

u=-7,e(x,0).

Control law (32) ensures the achievement of the
additional control objective in form (9)

R(o) < A, for > t., (33)
with objective function in form (10)
R(c) = 0,56". 34)

Virtual control (31) is locally bounded.

Statement 1. Consider the closed-loop system
(see Fig. 1) consisting of control plant (1), (2), tun-
able model (23) with input (28), adaptation loop
(30), virtual control law (31), control law (5), (32).
Then all of the trajectories are bounded, and con-
trol objectives (4), (22), (24) and (33) are achieved.
The boundedness of x, follows from boundedness
of x,,;, and ©.

Proposed method successfully applied for adap-
tive swing-up control and stabilization of unstable
equilibria of the cart-pole system. [16]

Example

Consider the dynamics of the pendulum with
dissipative torque:

g .{q' =P,
Vp =g sing —&3p + 65,

Without loss of generality, the dynamics of an
actuator is described by integrator [10]

(35)

S2 . X2 = ku, (36)

where x; = [g pl” is state space of

output subsystem, & = [§; &, §3]T is
the vector of positive unknown pa-
rameters of output subsystem, k > 0,
X, is a control torque.

The pendulum energy is
Hy(x,8) = p2/2+&(1-cosq), the
interaction hamiltonian is
H,(x,,&) = —&,q. Obviously the terms
of hamiltonian function are linear on
€, then Assumption 1 is satisfied.

Control objective is boundedness of

system trajectories, and achievement
of (4) by an output subsystem, and the

[—
|
|
] A
: S X
I I
b I -
- |
il I
I
|
=

Fig. 1. Closed-loop energy-based adaptive control system

identification of parameters &.
Design control law according the
proposed method.
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Stage 1. Introduce the desired manifold x, =
Xy Where X, is the virtual control of pendulum,
and deviation from the tuned manifold in form (5)

O = X2 ™ Xoyipr (37)

Design the "ideal" virtual control in form (7)
with compensation of friction torque

(38)

X3y = =12 ((Ho(X1, €)= H.)p) +§—3p.

2

153

the proposed method for a dissé)ative system (35).
Verify condition (8)

Note, compensating term p allows to apply

oH oH, .
E)=(Hy—H.)| —2g+—0p|=
w(x,,§,0) = (H, )[ 2 q+— o Pj

=(Hy - H:)p(-&;p + ézxzvm) =
=—y,(H, —H*)2§2P2-

Inequality (8) is valid, and p,(Q) = 2y,&, po.

Stage 2. Taking Note 1 into consideration, re-
duce the dimension of a tunable model (23), be-
cause of only the second equation of system (35)
depend on unknown parameters

Ds = V. (39)

The objective function (25) for model (39) is
0,(e) = 0,5¢?, (40)

where e = p — ps.
Stage 2.1. "Ideal" input of model (39) in form (27)

Ve = -l — & Sing —E3p +&yx,, ax < 0. (41)

Fig. 2. Tuning of pendulum’s parameters

Stage 2.2. Replace the unknown parameters §
by tunable ones & both in (35) and (38)

V= —a*e—%l sinq—é3p+é2x2; 42)

Xavint = ~1x(Ho(X1,€) = Ho)p) + 2—31). 3)

2

To obtain the adaptation law in form (30), calcu-
late w (Xl,x2,§) and gradients of w (Xl,xz,ﬁ) on
tunable parameters E_, in series

é:l = —yesing, éz = V26X), é3 =Y (44)

where y;, > 0, k = 1...3.

Introduce the limitation E_,z(t) > &5, &y > 0 is
minimum of the admitted values of &, for particular
plant, to restrict the level of virtual control.

Stage 3. Introduce the objective function in
form (34)

3epa

R(c) = 0,552. (45)

Control law in form (32) either
U= —Y,0C, (46)
or u = —y,signo. “47)

As seen from (46) or (47), control law doesn’t
depend on actuator’s parameters. To provide iden-
tifying properties, that is the persistently exciting
condition, the desired energy is selected as H«(f) =
= 0,1(1 + sinl07).

Experimental results of swing-up control of closed-
loop system (35)—(37), (39), (42)—(44), (47) are
shown on Fig. 2—4. Estimations
of parameters obtained by the

adaptation loop coincide with
the values calculated based on
response to the reference input
and physical measurements
(Fig. 2). Oscillation with the
desired energy is occurred (Fig. 4).

Conclusion

The adaptive swing-up con-

trol of Hamiltonian plants with
an actuator based on SBGM
and energy-based approach is
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Fig. 4. Pendulum’s energy

described. The proposed modification of SBGM al-
lows to design control of cascade system with ob-
jective function depending on unknown parameters
and trajectories of output subsystem. Reliability of
received results is confirmed by both analytical cal-
culations formulated as theorems, and computer
simulations, and experimental results.

The offered method can be applied for adaptive
swing-up control of electromechanical systems as
well as for problem with objective function depen-
ding on unknown parameters and trajectories of
output subsystem. For example, for linear equiva-

lents methods in the case of nonlinear coordinate
transformation depend on unknown parameters.
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