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1. Introduction and problem statement

In practice, the synthesis of a single-airscrew he-
licopter (SH) control laws the approach of division
of SH spatial motion onto isolated longitudinal and
transversal motions is accepted [1]. In this case, in ac-
cordance with [1], the control object in the side channel
can be considered as an interrelated (i.e. roll-yawing)
motion of SH, which in the "input-state" form, is:

X(t) = Ax(1)+ Bu(?), (1)
WV,

X = INOB ,u:(Auz j’
INOM AUpB
ayY

having the following matrices of coefficients:
V, ®

o,
a k4 a x a y aY u llpB
e by: by
14
a; ay aé’;y 0 bl plon
X X X
A = v © , B = Oy Oy
a : a"’x a’”’ 0 u, Upg
@y @y @y bmy bwy
0 1 a;” v 0 0 0
Here, the elements of the matrices
V. Oy @y Y V. Oy @y V.
ay, ayr, a4y’ ay a4y, a,’, 4y,

Wy @y ®y U, Upy L Upy U, Ups
a%e, al. a bl b, bl B Bl bl

are piecewise constant values (i.e. linearization coef-
ficients: [1]). The variables that correspond to the vec-
tors of state and entry (of control) have the following
meanings: AV, — deviation from specified value of the
lateral speed; Aw, — deviation from specified value of
the roll angular velocity; Aw, — deviation from speci-
fied value of the yawing angular velocity; Ay — devia-
tion from specified value of the angle of roll; Au, — de-
viation angle of a main rotor’s cone in the transverse
direction; and Au,, — pitch of a steering propeller.
We use the following notation:

_ v ) _,® _ a7
ap =ay’,a;p =ay*,a3 =ay’,d4 =ay ,
VZ Oy w}’
a21 :am ,a22=am ,023:aw N
X X X
V. o, _ , _ (0]
a3 =4, ,d3 =0,"d33 =04, ,d43 =a,",
u u u u
by = by, by = by, by = b, by = b,
u 1
by, = bmj,,bsz = bmz“,
then the control object (1) as a Multi Inputs Multi

Outputs (MIMO) system of the "input-state” type can
be written in more detail in the following way:

AVZ ay ap a3 a \(AV,
Ab, | |Gy ay ay 0 | Ao, N
A, lay a3y ay; 0 Ao,
AT 0 1 ay 0l Ay o
by by
by, by (A”zJ
by by, \Aupg, )
0 0

Hereafter it will be considered that information
about change of speed AV, as a result of direct or indi-
rect measurements is not available.

Taking into consideration the assumptions made,
the vector differential equation (2) can be written in

MexaTpoHnKa, aBToMaTH3anus, ynpasjenue, Tom 19, Ne 4, 2018

273



the form of a dynamic MIMO-system of the "input —
state — output” type:

() = Ax() + Bu(t), y(t) = Cx(t), 3)

where the matrices with real elements (i.e. those
specified over the field of real numbers R) are equal to:

ayp 4y diz apy
A= ay, ay dy 0 eR™" n—4, @)
as; ayp a0
0 1 ay O
bll b12
b, b
B=| 2 "R2NecR™ n=4,r=2, (5)
by, b3,
0O o

If, as a control law (3), to suggest the expression of
the following form:

u(?) = Fy(t) = FCx(?), @)
where F ¢ R™™ is a matrix of the output control-
ler, then, in accordance with [2] for the system under
consideration (3)—(7), a case of the dynamic MIMO-
system output vector control (i.e. output control) will
take place.

It is required (with the help of the control law (7))
to provide the specified motion spectrum for the con-
trolled system (3).

It should be noted that the output control of the
spectrum of a dynamic system is a classical problem in
control theory; however, judging by multiple published
works, in which different mathematical approaches are
used (e.g. [3—7]), no complete solution of this prob-
lem is presently available.

Hereafter we assume that matrix B € R**? (5) has
a full rank (rankB = 2 in this case), or that its equiva-
lent matrix B"B is invertible (i.e. det(B"B) = 0). From a
physical standpoint, this easily performed requirement
means a linear independence of input control signals.

Let us now specify a notion of the spectrum con-
sidered here. It will be understood as a set of matrix
A eigenvalues. In this case 4 € R¥** (4) and a set of
eigenvalues can be presented in the following way:

eig(A)={1; eC: det(A;Jy—A)=0,i=1,..,4}.

Here, I, — identity matrix of size 4x4, C — the set
of complex numbers (complex plane).

Let A be the given spectrum of matrix of system
(3) with a close-loop control (7), then it is possible to

determine a spectrum of the close-loop system as a set
of the matrix 4 + BFC eigenvalues, that is

A={X1’ 5“217\’33 5“4} (8)
Thus, it is required to determine (i.e. synthesize)

explicitly the controller matrix F e R2*3 (7), such that
the equality

A =eig(A+ BFC)

should be satisfied exactly.

The additional (methodological) complexity of this
problem is a necessity for obtaining a solution in ex-
plicit analytical form, since 4, B matrices, at best, as
per [1], have a piecewise constant form. We emphasize
that we know nothing about any alternative approach
that allows the analytical solution of this problem to
be obtained.

2. Decomposition of a dynamic system. As a first
step of the given problem solution we will consider the
multilevel decomposition of the SH model suggested
in [8—10].

Since in this case the inequality m > r (i.e. the
number of system’s outputs is greater than the number
of its inputs) is implemented, then, in general, not
taking into consideration specific numerical values for
m and r, we consider the multilevel decomposition of
system (3) of the following form:

— zero (initial) decomposition level

AOZA, BOZB, COZC, (9)

— first decomposition level
A =By AyB;", B, = By 4B, C, = CyAyB; ", (10)
— kth decomposition level (1 < k< M)

1 1T 1
Ay = Bj_ 1A By, By = Bj_ 1Ay By, (1)
T
Cp =Cr 14, 1Bi s

— Mth (final) decomposition level (here: M =
= ceil(n/r), where ceil(*) — is the operation of roun-
ding the number "*" upwards)

Ay =By Ay By 1, By = By 1Ay By, (12)
Cy = Ch 1Ay By .

Equations (9)—(12) for a set of indices k=0, M
involve the matrices with the following properties:

-1 B;
(B | BET) = [B’iJ BB, =0, B{B, =1I,, (13)
k

-1
[ """"" J -(ci [ i) ciel =0, 6 = 1, (14
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where the superscript "T" denotes the transposition
operation, the superscript " 1" denotes semi-orthogo-
nal annihilators (divisors of zero), and the superscript
"+" denotes the Moore-Penrose pseudoinverse matri-
ces [8—10].

Also, we consider the recurrence formulae to ob-
tain the required controller in (7), written down in
reverse order:

— M-th (final) decomposition level

Fy =(®yBjy - BiyAy )iy, (15)

— k-th decomposition level (1 <k < M)
F = (®By — Be A, )Cf, By = Bj — F,_ By, (16)
— first decomposition level
Fi = (®,B; - B 4,)C{, B =B/ -F,B, (I7)

— zero (initial) decomposition level
Fy = (®0By - By4y)C5, By = By — FiBy. (18)

Here @, (i =0, M ) are certain specified matrices,
which will be determined in the next section.

The multilevel decomposition procedure consid-
ered is then implemented.

3. Algorithm for synthesis
of the MIMO-system output control

The following statement that has been proven in
[11] is true

Theorem 1. Let m > r, and the following matrices
exist and are pairwise completely controllable:

1
Gl = By AyCi (BiuCir) . Hiy = (BiCl) . (19)

=

ol
Gl = B ACt(Bict) . H] =(Bic} )l, (20)

Gl = B A C (B Cﬁ) , Hf BlCll)l, 1)

(
GJ = ByA,Cy (BOCO) , Hy =(ByCq )L. (22)

Then, there exists a nonempty set of matrices K,
i=0, M, such that

®, =G, +K/H, =
_ (B,-’A,-Cf)(B[Cf)Jr + K] (B[Cf)L, *)

and (19)— (22) satisfy the equalities of spectra

. M .
eig(A, + B F,C)= U eig(®)), (25)
i=k-1
. M .
eig(A, + B F,C,) = | eig(®,), (26)
i=l
eig(A4y + ByF,Cy) = eig(A4+ BFC) =
el @7)
= | eig(®;)=A
i=l

The condition m > r in Theorem 1 is not restric-
tive; it is introduced to indicate that, in the present
case, F matrix from (7) is conventionally considered
as a matrix of controller (i.e. the number of inputs is
less than the number of outputs), and not as a matrix
of state observer (i.e. the number of inputs is greater
than the number of outputs).

For the case m < r. Theorem 1 has a dual formulation,
and matrix Fis replaced with the observer matrix L.

Theorem 2. Let m < r, N = ceil(n/m), and the fol-
lowing decomposition of system (3) hold (1 < k < N):

A():A, BOZB, COZC,
A, = CiA,Cy", By = CyAyCy, € =CyAyCit,

Ay = CaAC), By = Ci 4, Gy,
Cy = Co 4 Ci,

Ay =Cy Ay CyL, By =Cy Ay (Cy
Cy =Cy Ay CiL,

moreover, the following matrices exist and are pairwise
completely controllable:

G = (BHCE) BhayC. ty - (BACH)
G, = (Bict) By, H, =(Bic)
G =(Bicl) Btacy, H, = (Bic})
Gy =(BiC;) By Ay Hy = (BOLCJ)L.

Then, there exists a nonempty set of matrices L,
i=0, N, such that

1
¥, =G, +H,'L1'T = (ch;f)* B,*Ain +(B,~lC,~+) L,T,
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and, for
Fy =By (C/TJ‘PM —AMC&),
Fy :B;(C/Z‘Pk—AkCE)a Ci =Ci ~Ci ' Fiy,
F —B*(C"P —A C’) C =Cf -Ci"F
1 — 21 1 1 1~1 )» 1 — %1 1 2>
Fy = By (CoW - 4Cy), €y = Cy -~ C ',
it holds that

eig(Ay + ByFyCy) =eig(¥y),

N
eig( Ay + By FC )= U eig(¥)),
i—k-1
. N .
eig(4, + B F,C,) = Jeig(¥)),
izl

N+1
eig(A4y + ByF,Cy) =eig(4+ BFC) = | eig(¥;) = A.
i=1

As in the algorithms described in [§—10], only se-
miorthogonal and pseudoinverse matrices are used in
the transformations, which at least do not reduce the
condition number of the equations.

This approach does not impose restrictions in the
form of the differentiation between the algebraic and
geometric multiplicities of the elements of the spec-
trum to be assigned; there are also no restrictions on
the size of the problem [8§—10]. This is confirmed by
extensive simulation, which shows a high relative ac-
curacy of spectrum control and the practical absence
of restrictions on the size of system (3).

4. Analytical synthesis
of aircraft’s lateral motion control

In accordance with the problem statement, it is
required to find explicitly a formula of controller Fin
the control law that can be expressed in this case as:

AV, A
()
Au(t A *
‘D1 pel 2 |2 pl o, |, (28)
Au, (1) Ao, d
Ay
Ay

and provides for the close-loop system "HS + control
system” of a specified spectrum (8).

We perform for the system (3) with matrices (4)—(6)
the multilevel decomposition described in Section 2,
which has in this case two decomposition levels

(M = 1): zero level (9) and first level (10). Therefore,
we will have

b21b32 — b22b31 _ bl 1b32 — bl2b31

0
Bol: by1byy — by3bs, by1byy — biyby; )
0 0 0 1
b 0
BOL+ = b2+1 O ’
by, 0
0 1
* * b* b*
4 =(an aonj’ B, ={bn blzj’ € =|coy 0,
a1 o1 D22 Coyp 0

where for the compactness of a record we use the
following symbols:

b1+1 = (011033 — b13b51) (b1 03 _b22b31)/b+*,

b3y = ~(by1by; = by3by1)(by1b3; _bl2b31)/b+*;
b3y = (bi1byy = biabyy)? /",

bt = b121b222 + b121b322 = 2by1b1307105 -
=2by,b1303,b3, + bl22b221 + b12zb321 +

+b221b322 = 2by1byyb31b3, + b222b3.21:

asyy = (by1b3y = byybs) (@ byobyy — ayibyybyy +
+ ayybyyb3) — axbiabyy +ays3bybs) -
—ay3b17b31)/(byy (by1byy — b1ybyy)) -

—(a3103,b1) — a31605b11 + apyb3yb5, — azybyaby; +
+ay3b3,05) — a33b2,051)/ b3y, 0415 =

= a14(by b3y — by2031)/(by1by; — by2b,),

sy = by +agsbsy by = (031[7121 —013b321 -
—ay by b3y — ayyby by + azaby by + azsby bsy) /by -
—(by 103, —b12b31)(a21b121 _a12b221 —ay by by +
+ ayby1byy — @130, b3 + ay3by1031) /(b1 (by1byy — b12byy)),
biyy = (a3zb222 - 023b322 —aybiybsy + az by -
—ay30y3b3y + a33093037)/ by — (a21b122 - a12b222 -
—a11b120y; + ayybyybyy — a13b33095 + ay3by5b3y) %
X (by1b3y — by2031)/ (D35 (b1 1byy — b12b51)),

biyy = byy +ay3bs, biyy = byy + aysbyy,

+ + +
Csy1 = Ay by} + ayby, +aysbs,
_ + + +
Cey = a31by) +asyby) +assbsy,
+ +
Ca31 = by) + ay3b3).

To check the controllability conditions in Theorem
1, we calculate the matrices:
b0+ b0+ b0+ 0
Cd_T:(_l 0 O 0)’ B(—]{-:{ 11 12 13

0+ 0+ 0+ ’
b2 1 b22 b23 0
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b1+ b1+
RN
b21 b22

b1+
+~1T 1T %3 + pl pl
H1:(31C1 ) =l by | Hi Z(bn b12)7
1
1 al
1T\*T T [afi af
G- (mici) o)<
ay; a4

where, as before, the following notation is used:

b12(b21b22 +by b)) - bll(b22 + b32)

by = 2

by = _byy(by1byy + b303) - by (b +b32)
b+

b = b3y (811615 + by byy) - by, (b +b22)
b

B - by (byibyy + byybyy) — by (b3 +b31)
b+

po+ = by (By1b15 + b3, b3) - byy (b + b31)
22 b

by = _ b3y (byybyy + by b)) - by, (b + b21)
b+

al, = b bY ady =Y bY e, =

b*l :allbll +a21b12 +a31b13 >

b;92+ = a”b&* +azlbg; +a3lbg;’
b” = biyy [(bsy1beyy — biybeyy),
b12 = =bi1y /(b1 1biyy — bepybiyy),

by} = =buyy /(bey1begy — bupnbery),
b21§ = b*u/(b*ub*22 - b*12b*21)s
pl _ bllg bpl _ b;JZF

1 - 2 20712 — 2 2°
1+ 1+ 1+ 1+

(biz)"+ (33) (biz)"+ (b33)

al 1+ p1 al pl

ayy = axpbi by, a _a*12b2 by,

021 :a*12b1 b12»022 a*12b21b12'

For the zero and first decomposition levels, we cal-

culate the ranks of the following block matrices:

(Hy, GyH,), (H,, GH,),

bl b*l ,022 - bl *2 )

as a result we will obtain:

rank(HO GOHO) = rank(H1 G H, ) =2;

this corresponds to the number of "independent"
inputs » = 2. Therefore, each level of decomposition
satisfies the control-lability condition in Theorem 1.

According to the form of controllers — we define a

matrix whose eigenvalues will be assigned to the first
decomposition level. With this purpose for matrices
H,, G, of the first decomposition level we will con-
sider an additional sublevel, and calculate beforehand
for this matrix H,*, which in this case is equal to

bl+
Hi = [b“ 1].

Next, using the expressions

T
(Gl)l :HILGIHIL > (Hl)l :HILGIHI’
we obtain
(Hy), =
—022 (b112+(021+0111b112+/b ))/b12 +0121b115/b22,

_022+(b (a21+alllb /b ))/b22+a1 112+/b21§

Whereupon the scalar value (H, )1 will be equal to

1
(Hl)

Let us now assign one of the eigenvalues as a scalar

(Hy), =

matrix

(q)l)l = 7:1 =51

and calculate the matrix of feedback coefficients for
the additional sublevel of the first decomposition level.
We obtain

ky 2311/(035—([7 (021+‘1111b112+/b ))/bl5 +

+afybl3 /by )—(a§é+<b (as] + afibi3 /b35))/b3; +
+afybls /b33)/(asy — (bys(as] +afibls /b35))/bl5 +
+0121b112+/b

Next, according to equations — from Theorem 1

we calculate the matrix

(Hy)y = (Hy)y — ki (Hy)y Z(bllfn bllén)’
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where

bt = _(b12(sll/(a

+afybiy /by3)/(ash —(
+a12 3 /633)))/b3;
bi3' = (a3y + (b3 (a3} + afib
+a121b11§/b )/(as;
+012 /b )—311/(‘1 —(b (a21+
+af'iby3 /633))/b:33))/ bi3 +afyb); /b33)
+(B3)2/((B5)* +(855)°).

by;(as) +afibl3 /b33))/bi3 +
- b%;bzz J((Bi3)? + (B33)P),

/b3 bls +

We then specify the matrix of eigenvalues of the

zero sublevel of the first decomposition level by

(CDI)() = 722 =512
Finally, we find matrix k, by the rule
ko = (@), (Hy), ~(Hy)y G = (ki ki2),
where
ki = bllfnslz —af}bél a“lb“ >

1m
kyy =by's)y - azzb a12b

As a result, we obtain, using equation (18), the ma-
trix ®@;, whose eigenvalues s,,, s;,, are ensured by the
output controller for the model on the first decompo-

sition level:

il lg
11 Ji
D, = .
1 il il
21 J22

Here

11 = afl + (b3 (afibl!" + asib) = b{{'s12)) / bi3,
f12 —021 11b a2%b21 +b11 125
f21 = 012 +(b (a Hn +a%blm —bzlqnslz)) / bllir,

al al
flz—azz ale a22b +b21312

Based on equation (15), the first decomposition
level yields the following formula for the controller

1 1 1
ﬂ%%ﬂ—ﬂ&kﬁ{m /i m}

1 1 1

f21 f22 f23

where the elements are:

flll = cll(alllbll +a2%b 1+fl b% fl
fl]2: C (alllbll +02{b b11 11 b21 12
f113 = ;(alallbll +02}b fl —bé fl
f211 = Cll(a 21 +a2}b b b

(b (021 +alllb12/b22))/bl2 +
+afybls /b, )—(azz+(b (a21+a1%b /b%5))/bYs +

— (by3(as] +af'lbi3 /533))/ bl +

1 _ 1+, ,al al I+ pil 1+ ,il
o =3 (af 21+021b = b1 f21 = b1 /),

1 1+ pil 1+ pil
Sz = c13(a” 21 +a21b = by fo1 = b1 /)

To calculate matrix B, that is needed for deter-
mining the zero level controller, we use the second
formula in . As a result, we obtain the expression

bt b3 b3 0
Bong—FlBoi:['”: - ]
b21 b22 b23 0

Here

b’y = by = ((by1b3; - b22b31)(0111f111 + o5 flh+
+ e31/15))/(by1byy = biybyy),

bi'y = by + ((by1bsy — byybsy) (el fi + ex fiy +
+ e31/15))/ (b 1byy = biyby)),

bl = by —ci 1 fih - enfis — s fiss

b3y = b3y = ((by1bsy = baybs) ) (el f3) + €31 /3 +
+e31/23)/(Bribay — bysbyy),

b3y = b3y + ((by b3y — byybsy) (el o1 + €31 /2 +
+ e31.553))/(by1byy = biabyy),

T N S R S
by = byy —¢11f21 = €21f20 — €123

According to Theorem 1, we complete the system
of the zero decomposition level using . This yields

6y - (sict) " (Bianci)" - [jj} ]
21 22

where

a 0+ m m m
ayy = =byj (ay,b] + ay by; + as,b3),
a _ 0+ m m m
ayy = =byy (a1b3) + aybyy + a3 b53),
a 0+ m m m
ay, = =byy (ay,by + a3 b5 + az by3),

a 0+ m m m
ay, = —byy (ay,by) + ay by; +as by3).

Now, we should determine @, for the zero decom-
position level. For this purpose, we decompose the
matrices Hj, G, of the zero level into two sublevels
and calculate the corresponding matrices. We obtain

m
_b21

— <1 bm
(Ho)y=| b1 |, (Ho)éz[bl_n: 1}
1 21
(b11) +(b21)
H
(Hodo =) = gy

i) +(3))?
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(Gy), = (Hy), Gy (Hy )y =a =

= —((b31)7 (b5 (ay b3} + ay b3 + a3 b3;) +
+ (b{1biY (ay,b5} + ay b33 + a3lb23))/b21))/((b2m1)2 +
+ (b31)%) = (BB} (b (ay b’ + ay by + a3 bf3) +

+ (b0 (ay b + ayibs +a3,b{3))/63)) /(B3 + (B3)),

(Ho), = (Hy)y GoHy = b{" =

= —bi5 (b5 + ay b3 +az by3) + (b51(by5 (ay, b} +
+ay1b + a3 by3) + (b11b11 (ay bt + ay by +
+a3,b3))/651))/ bl — (BibYY (a6} +

+ ay by + az1b33))/ by}

Using the values of 5,°®, we then find the matrix

(scalar, in this case)

(HO) _b bbb+.

Let us now assign the eigenvalue as a scalar matrix

(®y), = A3 =53 and calculate the matrix of feedback
coefficients for the first sublevel of the zero decompo-

sition level. We obtain

ky = =b{"" (af"" = 503) .
Next, we calculate the matrix
(Ho)y = (Hy)y — ki (Ho)oL =

bb+pm ¢ aa mym
_[ &b (e = s03) brby)

b
blbb+(a]aa 503) 11
t2l (bll)2 (t21)2

We specify again the matrix of eigenvalues of the

zero sublevel of the zero decomposition level by

(q)o)o = 7:4 = S02-
Finally, we find matrix K, by the rule

Ky =(®y), (Hy), —(Hy),Go = (K11 Kipp),

where in the case under examination

1= —b0+[ biiby} _ bY* b (af” - 303)}(
b + (b3)? by}
X (ay by} + ay by + as bi3) +
bm)2
+b0+ bbb+ a% —g + ( 11 X
12 [ 1 ( 1 03) (blr,{)z +(b2m1)2
X(ay by} +ay b5 +aybi5) -
( b{'ib3} blbmb]”]'(afm —503)}
(1711)2 Jr(b21)2 bzml

CHEUH A

Kis =50, [blbm(afm - 503) +#)2rr12]+
(b1 +(b3))

my2
( bb+(a —S03)+ m(zb”) — 2]><
(b)) +(b3))
x (ay b} + ay biy + as bi3) -
0+[ bi'1b3) _ bf”’*bl”f(af” _SOS)]X
(bD? +(b3})? by}

m m m
X (ay1b3) +ay1byy +azb33).

As a result, we obtain using equation , the matrix
®@,, whose eigenvalues sy, 3, are ensured by the out-

put controller,
0 £i0
1 Ji2
D, = .
0 0 £i0
21 J22

Here
b K
_ ST
b __bll (aybi'| + ay b5 + a3 bi3) ——=— o
11
i0 0+ m m m
fi2 = Ky = by (a b + ay1b; + as,b(3),
b K
_ + Dy Ry
31 = —b{y (ay b3} + ay,b3) +ayby3) - == b
11

0+ m m m
12 = K — by (ay 10y +ay107; + a3 053).

Further calculations, which were described, for in-
stance, in [9, 10], finally yield the following formula
for the output controller vector (28):

(fu flsj »
d [le for o) @)

Elements of the matrix can be expressed as

S = blnéflilo —aybly —anbis —apbi| + b5n2fll§)’
fia = BSAY — agsbi —az3bfs — agsbii + b33 1,5,
f13 = _al4b1”f>
o= b]’ﬁfzi? — anby —aynbyy - apby) + b%f{g,
Sz = bi5f3) — a3y — aysbss — aysbs + b f33,
i3 = —a4b31.

The synthesized controller (and the control system
based on it) ensures exactly the specified spectrum (8)
for controlled lateral motion of the SH. This assertion
can be directly checked with the help of appropriate
analytical calculations. For this purpose it is suffi-
cient to make use of the package Symbolic Toolbox
MATLAB; namely, one can use the eig instruction to
calculate the eigenvalues of the 4 + BFC matrix.

MexaTponnka, aBToMaTu3anus, ynpasienue, Tom 19, Ne 4, 2018 279



5. Numerical analysis

Let use for simulation of the lateral motion of the
hypothetical SH the following numerical values of the
coefficient matrices:

-0,1900 -6,2000 68,9161 -9,7932
~1-0,1200 -6,2519 -0,1900 0 (30)
~[-0,0500 0,1000 -0,8720 0 ’

0 1 0,1000 0
-16,1744  -6,0409
B —-135,4887 -2,3329 ' 31)
3,5087  -13,0006
0 0

Suppose that we want the closed-loop system "SH +

+ control system" with matrices (30), (31) to have the
following specified spectrum (8):

A={—15 -15 —15 —1,5}. (32)

The set (32), as we can see, consists of identical

numbers, i. €., we want the closed-loop system "SH +

+ control system" to have the spectrum with a multi-

plication factor of 4.

It should be noted that, even under much simpler
conditions of the closed-loop control synthesis, when
all the elements of the state vector are accessible for
measurement, known methods do not allow this prob-
lem to be solved.

For instance, a well-known function place from the
MATLAB software package will deliver an error in
this case, since it is required to ensure that the mul-
tiplicity of the spectrum elements are greater than the
number of inputs.

For the numerical values of the matrices (30), (31),
and the desired spectrum (32) with use of equation
(29), we obtain the controller matrix:

[—0,0299 -0,0272 0,0168

-0,0125 0,2060 —0,0128) 33)

The matrix 4 + BFC of the close-loop system "SH +
+ control system" will take the form of

A+ BFC =
-0,1990 -5,6402 68,1118 -9,9879
-0,1200 -2,1649 3,0143 -2,2500| (34)
- -0,0500 0,1572 -3,6451 0,2267 |
0 1 -0,4663 0

, dagfs

)]

Fig. 2. The values of control actions of the close-loop "SH + control system"
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The computation of eigenvalues of the matrix
A + BFC vyields

eig(A+BFC)= {—15 -1,5 —15 -—1,5},
which coincides with the set (32), which we wanted
to obtain.

For the initial values of the SH state vector in the

system of SI units that are

(AVZ Ao, Ao, Ay)T:

= (3,00 0,02 0,02 0,30)"

the diagrams of transition functions for the state
vector components of the close-loop "SH + control
system" are provided in Fig. 1. Correspondingly, the
values of control actions are shown in Fig. 2. We can
see that the transition processes are fast-decaying ones
and have a close-to-aperiodic (low-oscillatory) type,
which ensures good handling qualities of the vehicle.

6. Conclusions

The problem of a stabilization law synthesis of
single-airscrew helicopter’s lateral motion for lack
of information about the lateral speed of its motion
has been analytically solved. The solution is based on
the method of the output signal control synthesis that
provides a specified spectrum of the MIMO-system’s
motion, presented earlier in [11]. The method is based
on a decomposition of the system using orthogonal
transformations. The method has no restrictions on the
algebraic and geometric multiplicities of the spectrum
elements, and also makes it possible to obtain analytical
solutions and a parameterization (construction) of

a set of controllers. Numerical simulation data that
confirm the analytical expressions are also presented.
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