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A Discrete Stochastic Regulator on a Manifold,
Minimizing Dispersion of the Output Macrovariable

Abstract

A theoretical result is presented in the form of a new algorithm for the synthesis of a control system over a non-linear object, whose
mathematical model represents a stochastic matrix difference equation having noise with a zero mean and finite dispersion in the right-
hand part. The new algorithm for synthesizing stochastic control for such an object is based on a three-stage procedure. In the first stage,
the structure of the control system is formed in accordance with the classical method of analytical design of aggregated regulators (ADAR)
in a fixed-noise assumption. In the second stage, the conditional mathematical expectation of the resulting expression for the first-stage
control is determined. In the third stage, the control model is refined by excluding the noise variable from the control formula based on
decomposing the initial control system affected by the new control. It is shown that the proposed control strategies minimize the target
macro variable dispersion and ensure a stable, on average, achievement of the target manifold. A detailed example of an application of
the algorithm for synthesizing control over the motion of an immobile center of mass is given, whose analog is represented by the objects
such as by robot-manipulators, is given. The results of numerical modeling are presented, which confirm the operability of the constructed
controller. Numerical simulations of the designed control system was performed using the authentic working equipment data.

Keywords: multidimensional discrete stochastic object, stochastic model of discrete control over motion of immobile center of mass,
minimum the variance of the output macro variable
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OUNCKpeTHbIN CTOXaCTUYECKUN perynaTop Ha MHoroobpasuu,
MWHUMU3UPYHOLLUA ANCTEPCUI0 BbIXOAHOWU MaKponepemeHHoiI’l1

B pabome npedcmasnen meopemuueckuii pe3yabmam 8 gude H08020 AA20PUMMA CUHME3A CUCMeMbl YNPABAEHUs CIoXacmuye-
CKUM HeAUHEUHbIM 006eKmMoM, Mamemamuieckas mooeab KOMopoeo ecmy pa3HOCMHOe cmoxacmuieckoe MampuyHoe ypaghenue,
6 Npagol yacmu Komopoeo NPUCymcmeyiom uiyMvl ¢ HYAe6blM CPeOHUM U KOHeuHoU ducnepcueli. OcHO80U HO8020 ascopumma
cuHme3a cmoxacmu4eckoeo ynpasneHus seasemcs mpexsmannas npoyedypa. Ha nepeom smane gopmupyemcs cmpykmypa cu-
cmembl ynpaeaeHus 8 cOOMmeemcmeul ¢ KAacCu4ecKum memooom aHAAUmu4ecKkoe0 KOHCMPYUPOBAHUS A2PecUupO8aHHbIX pecyasi-
mopog 6 npednonoxceHuu 3aguicuposannozo wyma. Ha emopom smane onpedensemcs ycio8Hoe mamemamuyeckoe oxcudanue
0m HAUl0eHHO020 bipadiceHus 045 ynpaeieHus Ha nepgom smane. Ha mpemvem smane ocyujecmensemcs 0eKOMNO3ULUS UCXOOHOU

"McenenoBanue BbIMOTHEHO py (GUHAHCOBOI moaaepxke PODU Ne 17-08-00920.
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YEMHbIX YCA0BUAX.

KponepemeHHoU

cucmembyl ypasreHuil nod 6o3delicmeuem Hall0eHH020 YRPasaeHUs, onpedeisemcs 3a8UCUMOChb 015 NepeMeHHOU uWyma om Habaio-
OeHull, UCNOAb306AHUE KOMOPOU 0aem Umozosyo Gopmyay 04a cmoxacmuueckoeo peeyaamopa. Ilokasano, umo HailoeHHble cmpa-
meauu ynpagaeHus MUHUMUZUPYIOM OUCHEPCUIO Ueae6oll MaAKpOnepeMeHHOl U 00ecneuusam ycmouuugoe 6 cpednem 00CmuiceHue
yeneeoeo MHoeoobpasus. Ilpuseden nodpoOHbLI npumep npUMeHeHUs aAeopumma cunmesa 0458 00seKkma ynpasieHus 08ulceHuem
HenodBUINCHO20 UeHMPa MAcc, AHAN020M KOMOPO20 ABAAIOMCA 006eKmbl pOOOMOG-nanunyaamopos. Ilpedcmaesaenst pesysomamaol
YUCAEHHO020 MOOCAUPOBAHUS C UCNOAb30BAHUEM 00CMOBEPHBIX OAHHbIX, KOMOpble NOOmeEepicoarom padomocnocooHocms u 3pgex-
MUBHOCMb NOCMPOEHHO20 CMOXACMUYECK020 PecyAsmopa No CPABHEHUI0 ¢ 0emepPMUHUPOBAHHbIM NPU €20 NpUMeHeHUU 6 Hepac-

Karoueevte caoea: mHozomepHblll HeAUHeUHblT OUCKPeMHbII CcMoXacmuvecKull obsexm, cmoxacmuyeckas modeab Ouc-
KpemHo20 YnpaeaeHus 08UNCCHUEM HENO0BUNICHO20 UeHMPA MAcc, YAPAGAeHUEe, MUHUMUBUPYIOUee OUCNePCUI0 8biXOOHOU Md-

Introduction

The paper discusses a generalization of the de-
terministic method of control over non-linear mul-
tidimensional objects on manifolds (for detail see a
complete review in [1—5]) — the method of analyti-
cal design of aggregated regulators (ADAR) [1] —
for a stochastic non-linear object prescribed by a
system of stochastic difference equation.

The principal success of its application for sol-
ving a non-trivial problem of control over nonlinear
multivariate objects stems from the formation of the
control system invariates or target laws of the con-
trol object behavior; using a set description of its
"final causes" (according to L. Euler) or the target
system’s properties, the ‘actions are derived’ which
are necessary for the control target to be reached.
An analytical description of the set of target states
of a control object and a selection of a special con-
trol quality functional meet the requirements of the
physical control theory principles [6].

The proposed system of discrete control is char-
acterized by the following initial statements and ex-
pected properties:

1) the control object is represented as a system of
stochastic difference equations;

2) no knowledge on the probabilistic properties
of the control object description is required; a ne-
cessary thing is the boundedness of the right-hand
parts (noise dispersion boundedness);

3) setting the target manifold (analytical descrip-
tion of the target properties of the synthesized con-
trol system by introducing ad hoc macrovariables as
a function of the initial object variables;

4) control effected in the space of states X[f] =
= X, ..., X,[7), t € {0, 1, ...} of the stochastic
object under study;

5) stable, on average, achievement of the target
manifold;

6) minimal dispersion of the output macrova-
riable [7, 8];

7) control system robustness with respect to ran-
dom uncertainties of an arbitrary probability distri-
bution type.

Formulation of the problem of control
over a discrete stochastic object

In the probability space (Q, F, (Fi = 0> P),
Fi = ofeltl = (€[1],....,8,, [1]), T < K}, sequences
of independent, equally-distributed non-correlated
random quantities {§;[f]},-, i =1,m;, m; <n with
the properties E{g;[¢]} =0, D{§;[7]} = cs,2 are pre-
scribed (by E{C}, D{C} denote mathematical expecta-
tion and dispersion of random quantity ¢, respectively).

A discrete control object is described by the fol-
lowing:

X[t +1] = F[f] + ult] + g[f + 1] + cg[z], 1
where X[7] = (X|[1], ..., X,[7]) is the vector variable of
state; F[7] := F(X[f]) € R" is the non-linear function;
u e R", m < nis the control; £[f] € R, I < n is the
random function with the above properties; 0 < ¢ < 1
is a certain constant interpreted as the noise
damping coefficient; and 7 € {0, 1, ...}. We assume a
pairwise independence of the random values from
the system {&,[7], &,l7], Xilz]}, i,k,d = Ln k=d.

It is necessary to determine the control law u(?),
ensuring that the following properties of the control
system are fulfilled:

E{y [t + 1]+ oy ,[f]} =0,0 <A =const <1,

J=Lm, t >

2) D{y [t + 11+ oy [/} > min, j=1,m, t - o
3) minimum average value of the quality func-
tional

E{o}= E{i ﬁ (002\4/3[1] + (A\Vj[t])z)} — min. (2)

=0 j=1

Here 1] := y,(X[7]) is a known function of states,
which is referred to as a target macrovariable [1].

Coefficients a, o are the parameters of the syn-
thesized control system, they have a denotative

meaning and are interrelated by the following ex-
pression ® = 0,52+ a.® — (2 + a?)? — 4).
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Solution of the problem of analytical design
of control over a discrete stochastic object

For the sake of a convenient reference to the
proposed method and its implementation algorithm
of analytical design of a stochastic discrete regula-
tor in the ADAR-class, let us term them as the
ADAR(S) (Analytical Design of Aggregated Regu-
lator for a Stochastic discrete object).

Restrictions on the choice of control actions are
the following:

1) control strategies are selected from the ADAR-
control class;

2) only those strategies are admitted, for which
the value of the control variable u[f] is a function of
the preceding states and controls

u[t]=u[X[t]’X[t_1]""’X[0]’J, re{0,1,...}.
ult —1],ult —2],...,u[0]

The major statements of constructing a discrete
system of control over a non-linear object from
among the ADAR-strategies, minimizing the target
variable dispersion, shall be formed as the following
algorithm.

ADAR(S) algorithm. We list the main stages of
the algorithm based on a combination of the clas-
sical ADAR technique and the apparatus of condi-
tional mathematical expectations (see e.g., [7]).

1. Searching for the control structure #”[],
t €{0,1,...} on the basis of the classical ADAR at
a fixed noise.

2. Assuming a conventional mathematical expecta-
tion afr] = E{a”[r]] &'}, where &' = (¢[0], g[1]...[1]),
é[k] = (%][klsaan[k])ak = l’n'

3. Decomposing description (1), with the equa-
tions y ;[ + 1]+ o,y ;[1] =0, j =1,m (left-hand parts
of the Euler-Lagrange equations for the functional of
type (2) taken into consideration). Excluding va-
riable £[7] from expression u[t] = E {ﬁA[t] | &},

Thus the synthesis of a discrete regulator has
been completed.

Sample application of the ADAR(S) algorithm
for a discrete object of control over the motion
of the immobile center of mass

Let us discuss an example of application of the
algorithm for synthesizing control strategies minimi-
zing the dispersion of the output target macrovariable,
whose description is a discrete analog of the control
object over the immobile center-of-mass motion.

Control problem statement. We deal with the
matrix description of a control object
xilk +11= Rl
Xk +1] = F k] + tAulk] + €[k + 1] + cE[ k],
k{0,1,...},

and the purpose of control

€)

vw(x[k]) = x,[k]-b" >0, yeR?, k >0 (4)
where

Flk] = x,[k]+ x,[k],

5
Bkl = xolk] + tAgx k] oD, O

A=m", X, que R, i=12m=|lmlss; &kl
is the random sequence of quantities at a fixed va-
lues of k and constant ¢ possesses the same pro-
perties as in the description of object (1); t is the
discretization parameter.

Remark 1. Object (3) is a discretized analog of a
continuous model given by mb(t) = q(b(t),b(t)) + u,
t >0 (seee.g., [9, 10]), where b R3 is the state vec-
tor with the coordinates b(¢) = (bl(t),bz(t),b3(t))T,
t>0; g=q(bb)e R® are the generalized forces
acting on the control object; m = ||mls,; is the ki-
netic energy matrix, and u € R, u = u(b(t),b(r)) is
the control vector. Using a consecutive substitution
of the variables x,(?) = b(¢), x,(¢) = b(t) and trans-
forming the resulting object via the Euler scheme by
adding noise into the right-hand part of its descrip-
tion, we obtain (3).

Random functions {¢[k + 1] + cg[k]}, k €{0,1,...}
in the right-hand part of system (3) given by the
sliding mean have a transparent physical interpreta-
tion and traditionally characterize the instrumental
(see e.g., [7]), measurement and control errors; the
value of coefficient 0 < ¢ < 1 is associated with the
degree of influence of the previous measurement.

Now formulate the problem of stabilizing the
vector variable x,[k] in the neighborhood of the pre-
scribed value of b*

E{y(x;[k])} = E{xi[k] =57} - 0, y € R, k — o (6)

with the control quality conditions listed as 1) — 3)
in Section 1, specifically

Diy ;[k +1] + oy[k]} —» min, D{y[k]} - min,
J=L123 k> x

03 ) )
E{®)=E zo_z](a w2kl + (Ay [k])?) b — min,
t=0 j=

O<o<l.
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Remark 2. From the expression

Dy jlk +11} = D{x, [k +1]- 5"} =

= Dixyjlk]+wxy k1) = Dixy[k] +

+ W Fylk — 1]+ tAulk — 1]+ £ [k] + celk —1])} =
= D{x;[k] + t(Fylk — 1]+ tAulk —1] +

+ cElk = 1])} + D{E[K]} = D{g[k]}

it follows that the response macrovariable y[k] va-
riance cannot be smaller that of the noise presented
in any description of an object under any type of con-
trol. In this case, it is reasonably that there is a con-
trol, where the variance D{yjlk]} is minimal [7, 12].

Solving the control applied problem with
ADARC(S). According to the above ADAR(S) algo-
rithm, we will perform the following steps.

Step 1. Derivation of a control system structure.
Let us fix the random functions E[4], k € {0, 1, ...} and
perform a deterministic ADAR-synthesis [1] for the
control object (4)—(6) including a quality functional
of the synthesized control system expressed as follows

O =3 3 (022Kl + (Av,IK])?) > min,
k=0i=1

w(xylk]) = xy k] —b;, j=123.

For the sake of convenience in what follows prob-
lem (8) will be denoted by a pair of symbols (D, ).

The solution of the first step relies on the ideo-
logy of the classical ADAR-method for determining
control at fixed {¢[k]}, - (- To do so, first we intro-
duce an auxiliary macrovariable given by

)

)

Here y® = (y{V, ¢, y{P) and an intermediate
control target is the manifold {x:y"(x) = 0}.

Formulate the problem (®, \V(I)), accompanying
the control system synthesis, where

v V] = x,[k] - o(x,[K]), k €{0,1,...}.

Ms

o, - ﬁga%méWkD2+(Aw?4kD2>
2

k

N

Controls #;, i =1,2,3, according to the deter-
ministic ADAR, are sought for from the matrix
equation

Ok + 1]+ 0y VK] =0, y Pkl e R,
O0<o <1, ke{0,1,...},
on whose solutions in turn an unconstrained
minimum of functional @, is achieved.

Thus we obtain the control structure accurate to
the further determined function ¢(x,)

tAilk] = - Flk] - &:lk + 1] - ¢,&,[k] -
— o X;[k] + plk],
PLK] = o(x;[k] + txy[k]) + o10(x; [K]).

Determination of the form of an auxiliary variable
at fixed {¢[£]}, - - In order to obtain ¢(x;), object (3),
(5) is reduced on the manifold \y(l) = 0, which,
when fulfilled, gives us x,[k] = o(x[k]), k > x
(follows from (9)), and the reduced system of equa-
tions acquires the following form

(10)

%k + 1] = %,[k] + to(F[k]). k —> 0. (1)

Here for the sake of understanding the subsequent
actions, variable x; in description (11) has the mean-
ing of behavior (4) on manifold \y(I) = (. In what
follows we would again use the initial notations.

Now in order to determine function ¢(x;) we
introduce a macrovariable of the following type

v Ik = ' Gk = B[k -5, ke Z,. (12)

The second problem is formulated (@,, V),
which accompanies the control system synthesis,
where its quality criterion will be given by
o 3
@, = Y > (as(wPlk])? + Ay V[&])?) > min,
k=0 j=1

and the control target — by wV[k] =0, y!V[k] =
= {1k w LKL WiV, ke Z,.

Variable o[k] = ¢(x;[k]) is sought for from the
solutions of the matrix equation \y(“) [k +1]+
+ oy k=0, ykleR?, 0<w, <1, upon
which an unconstrained minimum of functional ®,
is in its turn found. From the said equation, now
using descriptions (11) and (12), we obtain

o(xi[k]) = —v ' (i [k] (1 + 03) =" = yb"),
keZ,.
The result of Step 1, according to our ADAR(S)

algorithm, is the structure of control (at fixed noise)
as a combination of equations (3)—(5), (10), and (13)

(13)

xlk +1] = Flk], Flk]= x[k]+tx,[k],

X,k + 1] = F,lk] + tAdlk] + E[k + 1] + cg[k],
Fylk] = x,[k]+ tAq (x,[k], x,[k]),

w(x [k]) = x,[k]- b7, wPLk] = x,k] - o(x,[K]), (14)
tAilk] = - F,lk] - E[k + 1] — cE[k] +
+ (L + ope(x[k]) — (I + o + 0,)x,[k],
o(xi[k]) = v (i [k] =) (1 + 0,) =
= (1 +oy)y(x kD) k € Z,.
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Statement 1. The system of equations (14) under
deterministic conditions (§[k] = 0, k£ > 0) ensures
that the control target w(x;[k])= x;[k]- b* =0,
v e R?, k > o and the global minimum of the fol-

o 3
lowing form ®=) > (ocz\yﬁ[k]+(A\yj[k])2)—>min

are achieved for ]f[hoej ciuality functional, where o is
the control system parameter proportional to the
transition process duration.

Proof of Statement 1 relies directly on the classi-
cal ADAR-method [1].

Step 2. Derivation of a stochastic control system
for problem (4)—(6). The conditional mathematical
expectation u[k] = E{i[k] |<§k}, k €{0,1,...}, taking
into account the initial conditions, in particular, the
pairwise independence of the random values &j]f],
gld, xj1], i #j will acquire the following form

tAulk] = E{cAdlk] |E*} = E{-F,lk] -k +1] -
— el +(1+ oo(x [KD) =1+ o + 0)x k1€ } = (45
= —Flk] - cE[k] + (1 + o )o(x,[£]) -
— (1 + (1)1 + (,02)X2[k].
Step 3. Refinement of the stochastic control sys-
tem using the properties of the control object random
functions. Substitute (15) into (3), (5). After simple

transformations (decomposition of the initial sys-
tem) we obtain

v OTk + 11+ oy Pk] = gk +1]. (16)

Considering (15), obtain an explicit control after
simplification as follows

tAulk] = —-F k] - coy Pk - 1] -

(17)
—(l+o+ oy PLk] - @)X, [k].

Final description of the stochastic control system
represents a family of equations (3)—(5), (17)

x|k +1] = Flk], Flk]=x[k]+tx,[k],
X,lk + 1] = F,|k] + tAalk] + [k + 1] + cg[k],
Bkl = x,[k]+ tAq(x[k], x,[k]),
w(x[k]) = xi[k] =5, wPLk] = x,[k] - o(x;[£]), (18)
tAulk] = —F,[k] - copy Pk - 1] -
-+ + C)\V(I)[k] — o,y X,[k],
o(xi[k]) = =" (1 + 0y)y(x[k]), k € Z,..
Properties of the stochastic control system (18).

Let us deal with the behavior of the control object
under the resulting control (17).

min D{y [k + 1]+ oy P[k]} = o2,
Statement 2. D{y ;[k + 1]+ o,y ;[k]} — min,
j=123 k — .

The proof of Statement 2 immediately follows
from the representation (16) and the obvious fact

Diy Pk + 1]+ oy V[k]} =
= D{x, [k + 1] olk + 1]+ opy P [k]} =
= D{F,[k] + tAulk] + [k + 1] +
+ ce[k] - olk + 1]+ oy V[k]} =
= D{F,[k] + tAulk] + cE[k] — o[k + 1] +
+ oy V[k]} + D{g[k + 1]} > o2

due to the properties of random variables E[k] = 0,
k> 0.

After substituting (17) into the system of equa-
tions (3), (5) we obtain the result

xilk +1] = x,[k] + X, [£],
X,k +1] = —copy Pk =11 = (1 + o, + )y P[k] - (19)
— 0y X, [k] + E[k + 1]+ cE[k].

Statement 3.

D) lim B[k + 1]+ 0%, k]} =
= lim Efy [k +1] -y V[k]} =
= lim E{olk + 1]+ oglk]} = 0;
lim E{x,[k]} = 0;

2) lim E{glk +1] - glk]} =

= ~(L+ @) lim E{x,[k]} = 0;
3) lim E{ylk + 1]+ oy[k]} = 0.

(20)

The proof of Statement 3.

Consider the second equation in (19) and apply
the operation of mathematical expectation to both
parts of this equation including into consideration
the properties of the random components

E{x,[k + 1]+ 0yx,[k]} =
= E{-c(y VK] + 0,y Pk - 1]) -
— (v V1k]+ oy V1K) + ek + 1]+ celk]} =
= Ety Pk +1] -y V[k]}.
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It is also easy to show the fairness of expressions

0= Efy Pk + 1]+ oy k] =

= E{x;lk +1] - glk + 1] + o, (x,[k] - ¢lk]) } =

= E{x;[k + 1]+ 0%, [k] = (ol + 1] + 0, 0[k]) }.

The result 1) of Statement 3 immediately follows
from last relations.

The result 2) of Statement 3 follows from expres-
sion

olk +1]1- plk] =
= xlk +11 - x, [k] - (w Pk + 1] -y V[k]) =
= X[k +1] = X, [k] — (x[k + 1] + 0,3, [k]) =
= —(1 + oy)x,[k].

Finally, result 3) of Statement 3 follows from the
expression

0= Efolk + 1]+ wjolkl} =
= E{-t " (1+ o) ylk + 1] - oyt (1 + 0,)y[k]} =
=t (1+ 0y) E{ylk + 1]+ o[k},
based on the last formula from (18). Statement 3 is
proved.

The validity of the properties (7) follows from
statements 1—3.

Numerical simulation

For the sake of illustration, let us use the de-
scription of control object (3)—(5).

The operation of the designed control algorithm
has been performed for a model problem (see e.g.,
[9—11]): positioning of object (3) into a predeter-
mined point of the working surface.

Comparative numerical simulation of system
(14) under computational conditions (E[k] = 0,
k > 0) and stochastic system (18)

The simulation (Fig. 1) was performed for the
following initial data:

initial state—vector x;(0) = (0,997; 2,129; 0,14)
(rad.); target values b*(0) = (—0,052; —1,125; 0). Val-
ues of the matrices m, g correspond to model data
from [9—11].

Comparative numerical simulation of system (14)
under off-design conditions and stochastic system
(18) at the same noise levels. Judging from the re-
sults of a preliminary simulation, the following con-
clusions are permissible:

I) classical deterministic ADAR-models for a
low random-noise level (5—10 %) (off-design con-
ditions) exhibit robustness with respect to the target
being achieved;

2) qualities of control of a stochastic regulator
based on the ADAR(S)-structure and the determin-
istic regulator ADAR in the off-design conditions
for a low random-noise level are commensurable;

3) stochastic regulator based on the ADAR(S)-
control structure is robust to the arbitrary distrib-
uted noise of a sub-critical level (here noise/signal
ratio ~15—18 %).

A conclusion follows from Fig. 2 and Table on
the performance of control system (18) and robust-
ness of the ADAR-model (14) in the off-design
conditions at a low noise level (the number in the
numerator of the fraction is the standard deviation
o(xy), j= 1, 2, 3 and the number in the denomina-

T 1
: 3 T T T T 04 :
l — X1, |
: e Y2 [ 0.2 |
| 1 ] \: i, oa l
| O I
l 0f . HEE S |
| |
| . [ _0.2_ |
! -1 o e !
: -1 ! ! ! ! -2 | | | | 04 :
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Fig. 1. a)—c) — transition processes for the phase coordinates x,;, j = 1, 2, 3 of systems (14) without noise (here xlAj =x, j=1,2,3—
solid line) and with (18) (xy;, j = 1, 2, 3 — dotted line), respectively; the regulator parameters o, = 0,1; o, = 0,001; = = 0,1
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Fig. 2. @)—c) — transition processes for the phase coordinates x,;, j = 1, 2, 3 of systems (14) in the off-design conditions (here xlAj =Xy,
J=1,2,3 — solid line) and (18) (x;, j= 1, 2, 3 — dotted line), respectively; the regulator parameters: o, = 0,1; », = 0,001; © = 0,1

Comparison of standard deviations

o(x)/o(x{}) | o(x)/o(xih) | o(x;3)/c(x{})

a(*)

1 0,180/0,181 | 0,470/0,477 | 0,109/0,128
2,5 0,28/0,291 0,521/0,538 | 0,277/0,376
5 0,481/0,579 | 0,672/0,724 | 0,535/0,687

tor of the fraction is the standard deviation c(xf‘}),
j=1,2,3 (ADAR in the off-design conditions)).

Summary

The proposed new algorithm for designing a sto-
chastic discrete regulator on manifolds for a non-
linear multidimensional object essentially usesthe
method of analytical design of aggregated regulators
earlier developed for deterministic non-linear objects.

Based on the methodology of ADAR-synthesis,
a formula has been obtained for the vector-control
strategy minimizing dispersion of the target mac-
rovariable [12].

The properties of a stochastic discrete regulator
(stable on average achievement of the target mani-
fold, minimal dispersion of the target variable) have
been formulated and proved.

Relying on the proposed algorithm, the vector-
control law has been constructed for the problem of
control over the immobile center-of-mass motion.
For this sample case it has been shown that disper-
sion of the second-order moving average/ (linear
combination) of the target variable coincides with
that of the noise in the right-hand part of the sys-
tem of stochastic difference equations.

The results of numerical simulation have been
presented, which validate the consistency and per-
formance of the regulator constructed in this study.

An inheritance of the stochastic regulator deve-
loped in this study and the earlier developed (e.g.,
[13]) method of non-linear adaptation has been
shown in terms of their application to a discrete
object with deterministic noise [14].
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