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На основе полученного точного решения приближенного (усеченного) уравнения для вектора конечного поворота 
твердого тела с помощью квадратур решена задача определения кватерниона ориентации твердого тела при про-
извольном векторе угловой скорости и малом угле поворота твердого тела. Исходя из этого решения предложен

Abstract

The analytical solution of an approximate (truncated) equation for the vector of a rigid body finite rotation has made it possible 
to solve the problem of determining the quaternion of orientation of a rigid body for an arbitrary angular velocity and small angle 
of rotation of a rigid body with the help of quadratures. Proceeding from this solution, the following approach to the construction of 
the new analytical algorithm for computation of a rigid body orientation with the use of strapdown INS is proposed: 1) By the set 
components of the angular velocity of a rigid body on the basis of mutually — unambiguous changes of the variables at each time point, 
a new angular velocity of a rigid body is calculated; 2) Using the new angular velocity and the initial position of a rigid body, with 
the help of the quadratures we find the exact solution of an approximate linear equation for the vector of a rigid body finite rotation 
with a zero initial condition; 3) The value of the quaternion orientation of a rigid body (strapdown INS) is determined by the vector of 
finite rotation. During construction of the algorithm for strapdown INS orientation at each subsequent step the change of the variables 
takes into account the previous step of the algorithm in such a way that each time the initial value of the vector of finite rotation of 
a rigid body will be equal to zero. Since the proposed algorithm for the analytical solution of the approximate linear equation for the 
vector of finite rotation is exact, it has a regular character for all angular motions of a rigid body).
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Introduction

During operation of many strapdown inertial 
navigation systems (SINS) the vector of a rigid body 
finite rotation is periodically calculated by the meth-
od of approximate solution of the approximate linear 
differential equation for the vector of finite rotation 
(in the theory and practice of SINS construction, in 
ultra rapid cycles of algorithms for small angles of 
rotation, the nonlinear term in the diffe rential equa-
tion for the vector of finite rotation of a rigid body 
is neglected). The angular velocity vector of a rigid 
body is the input quantity in the equation. Note that 
the full nonlinear differential equation for the vector 
of finite rotation of a rigid body is an analog of the 
quaternion linear equation; the vector and the qua-
ternion of the rigid body orientation are linked by 
known relations. The approximate linear differential 
equation for the vector of finite rotation in the litera-
ture is solved by various numerical methods, for ex-
ample, by Picard’s method, then the second iteration 
of this method in the practice of SINS can be taken 
for the final one. This term in the iteration formula 
of Picard’s method is called a non-commutative ro-
tation vector, or "coning". For certain motions of a 
rigid body, this term makes a significant contribu-
tion to the error of the method. The study of non-
commutative rotations (or "co ning") as a kind of me-
chanical motion of bodies, separation of numerical 
algorithms for determining the orientation of a rigid 
body (SINS) for rapid and slow counting cycles are 
aimed at compensation for the effect of this phenom-
enon. Meanwhile, for some new angular velocity vec-
tor, which is obtained in determining the orientation 
of a rigid body (SINS), based on the initial arbitrary 
angular velocity vector in unambiguous interchanges 
of variables in the motion equations for a rigid body, 
the approximate differential equation for the vector 
of finite rotation of a rigid body admits of an exact 
analytic solution. We will show this.

The problem is to define the quaternion of orien-
tation L of a rigid body with respect to an arbitrary 
given angular velocity vector w(t) and the initial an-
gular position of a rigid body in space based on 
the quaternion kinematic equation known as the 
Darboux problem. Further, we make changes of 
variables by the scheme L → U, where U is the qua-
ternion of the orientation of some introduced co-
ordinate system, it is always possible to reverse the 
transition U → L. These changes have the character 
of rotation transformations and reduce the initial 
problem of determining the orientation of a rigid 
body (quaternion L) with an arbitrary variable an-
gular velocity vector w(t) to the problem where the 
angular velocity vector w(t) of the introduced coor-
dinate system, remaining generally variable in ab-
solute value, performs a definite motion — rotates 
around one of the axes of the coordinate system. 
This motion is generalized conical precession and 
agrees well with the known Poinsot’s concept that 
any rigid body rotation about a fixed point can be 
represented as a conical motion. Finding an analy-
tical solution of the quaternion differential equation 
obtained with respect to the new unknown qua-
ternion U is still a difficult problem. However, the 
equation differing from this only by the coefficient 
"1/2" in the right-hand side (i.e., with the angu-
lar velocity vector W(t)/2) is solved in closed form. 
Moreover, we note that the quaternion differential 
equation is isomorphic to the homogeneous vector 
differential equation of Poisson.

The resulting problem with the angular velocity 
vector W(t) and the unknown quaternion of orienta-
tion U is associated with the complete nonlinear dif-
ferential equation with respect to the unknown vec-
tor of finite rotation of a rigid body х. The approxi-
mate linear equation for the vector of finite rotation, 
which is an inhomogeneous vector differential equa-
tion whose homogeneous part is equivalent to the 
Poisson equation with the vector coefficient W(t)/2, 

следующий подход к построению нового аналитического алгоритма для вычисления ориентации твердого тела с по-
мощью БИНС: 1) по заданным компонентам вектора угловой скорости твердого тела на основе взаимно-однозначных 
замен переменных в каждый момент времени вычисляется новый вектор угловой скорости некоторой новой введен-
ной системы координат; 2) используя новый вектор угловой скорости и начальное положение твердого тела, с по-
мощью квадратур находится точное решение приближенного линейного уравнения для вектора конечного поворота 
с нулевым начальным условием; 3) по вектору конечного поворота определяется значение кватерниона ориентации 
твердого тела (БИНС). Отметим, что при построении алгоритма ориентации БИНС на каждом последующем 
шаге замена переменных учитывает предыдущий шаг алгоритма таким образом, что начальное значение вектора 
конечного поворота твердого тела каждый раз будет нулевым. Поскольку предлагаемый алгоритм аналитического 
решения приближенного линейного уравнения для вектора конечного поворота твердого тела является точным, он 
носит регулярный характер при всех угловых движениях твердого тела.

Ключевые слова: аналитическое решение, алгоритм, ориентация, вектор конечного поворота, произвольная угло-
вая скорость, твердое тело, БИНС, кватернион
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becomes analytically solvable and its solution x* is 
obtained in quadratures by the Lagrange method.

The exact solution of the approximate linear 
equation for the vector of finite rotation of a rigid 
body made it possible to solve the problem of de-
termining the quaternion of orientation of a rigid 
body for an arbitrary angular velocity and small 
angle of rotation of a rigid body with the help of 
quadratures. Proceeding from this solution, the fol-
lowing approach to the design of a new algorithm 
for computation of SINS orientation is proposed: 
1) by the set components of the angular velocity 
of a rigid body on the basis of unambiguous inter-
changes of the variables at each time point, a new 
angular velocity W(t) of some new coordinate sys-
tem is calculated; 2) using the new angular velocity 
and the initial position of a rigid body, we find the 
exact solution x* of the approximate linear equation 
for the vector of finite rotation with a zero initial 
condition with the help of quadratures; 3) the value 
of the quaternion orientation of a rigid body (SINS) 
is determined by the vector of finite rotation on the 
scheme x* ≈ x ⇔ U → L.

During construction of the algorithm for SINS 
orientation at each subsequent step the change of 
the variables takes into account the previous step 
of the algorithm in such a way that each time the 
initial value of the vector of finite rotation of a rigid 
body will be equal to zero. Since the proposed algo-
rithm for the analytical solution of the approximate 
linear equation for the vector of finite rotation is 
exact, it has a regular character for all angular mo-
tions of a rigid body.

Previously, the authors constructed the exact so-
lution of the Bortz approximate equation for the 
orientation vector of a rigid body and the quaterni-
on orientation algorithm of SINS on its basis [1, 2].

1. Statement of the problem of determining
the orientation of a rigid body (SINS)

Consider the Cauchy problem for quaternion ki-
nematic equation [3] with arbitrary given angular 
velocity vector-function w(t), written in the follow-
ing form (this problem is known as the Darboux 
problem):

 2 ( ),t=� �L L w  (1.1)

 0 0( ) .t =L L  (1.2)

Here 0 1 1 2 2 3 3( ) ( ) ( ) ( ) ( )t t t i t i t i= λ + λ + λ + λL  is a 
quaternion describing the position of a rigid body in 

an inertial space; 1 1 2 2 3 3( ) ( ) ( ) ( )t t t t= ω + ω + ωi i iw  
is the angular velocity vector of the rigid body spe-
cified by its projections onto body-fixed coordinate 
axes; i1, i2, i3 — the units of the hypercomplex space 
(imaginary Hamiltonian units), which can be iden-
tified with the vectors of a three-dimensional vector 
space i1, i2, i3; the symbol "é" stands for the quater-
nion product; L0 is the initial value of the quater-
nion L(t) at t = t0, t ∈ [t0, ∞) (t0 set equal to 0). The 
problem is to find the quaternion L(t).

The problem of determining of the vector of a 
rigid body finite rotation x(t) [3] relative to an iner-
tial space can also be posed by solving the exact 
differential equation for the vector of finite rotation 
of a rigid body

 /2 ( , ) /4,= + × +x x x x� w w w  (1.3)

where "Ѕ" and "(•, •)" mean the vector and the scalar 
products. In equation (1.3) the input quantity is the 
angular velocity vector w. Note that the nonlinear 
equation (1.3) for the vector of finite rotation of 
a rigid body х is an analogue of the quaternion 
linear equation (1.1); vector х and quaternion L are 
connected by the relations:
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where ϕ is the angle of orientation of a rigid body 
and e — the Euler axis of rotation. In the practice 
of constructing of SINS orientation algorithms by 
numerical solution of equation (1.3) on a time 
interval 1m mt t t− <m  the third member in this 
equation is neglected for small angles of rotation
(it is the magnitude of the second order). If the de-
rived simplified (approximate) differential equation

 /2∗ ∗= + ×х х� w w  (1.5)

is solved by Picard’s iterative method, then the 
second iteration of this method is taken for the final 
one [4, 5]:
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where vector b is called a non-commutative rotation 
vector, or "coning". For certain motions of a rigid 
body, this term makes a significant contribution to 
the error of the method. The study of non-com-
mutative rotations (or "coning") as a kind of me-
chanical motion of bodies, separation of numerical 
algorithms for determining the orientation of a rigid 
body SINS) for rapid and slow counting cycles are 
aimed at compensation for the effect of this phe-
nomenon. Meanwhile, for some new angular velo-
city vector w(t), which is obtained in determining 
the orientation of a rigid body (SINS), based on the 
initial arbitrary angular velocity vector w(t) in un-
ambiguous replacements of variables in the motion 
equations for a rigid body, the approximate equa-
tion for the vector of finite rotation of a rigid body 
admits of an exact analytic solution, which will be 
shown in what follows.

2. The exact solution of the approximate equation 
for the vector of finite rotation of a rigid body 

and design of the algorithm for determining SINS 
orientation on its basis

Let’s write unambiguous replacements of vari-
ables in the problem (1.1), (1.2) [6] according to the 
scheme L → U, where U(t) is the quaternion of ori-
entation of some introduced coordinate system (new 
variable), quaternion V(t) is the generated transition 
operator, K is an arbitrary constant quaternion:

 ( ) ( ) ( ), 1,t t t= = =U К V К V� �L  (2.1)
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2 1 3 1

2 1 3 1

1 1
0 0

( ) ( ) cos ( ) ( ) sin ( ),

( ) ( ) sin ( ) ( ) cos ( ),

( ) ( ) , ( ) ( ) ,
t t

t t t t t

t t t t t

t d t d

μ = ω Ω − ω Ω
ν = ω Ω + ω Ω

Ν = ν τ τ Ω = ω τ τ∫ ∫

 (2.5)

 0 2(0) ( )= −U i К�� �L  (2.6)

where (2.3)—(2.6) the new problem for determining 
the orientation of a rigid body with the new angular 
velocity vector w(t), "||•||" means quaternion norm.

Finding an analytical solution to the resulting 
quaternion differential equation (2.3) remains a dif-
ficult task. However, the equation that differs from 
this one only in the coefficient "1/2" on the right 
side (i.e. with the angular velocity vector w(t)/2)

 2 ( ) /2,t= К w К�� � � �Y Y  (2.7)

 0 2(0) ( )= −i К�� �Y L  (2.8)

is solved in a closed form. Choose quaternion K in 
the form 0 2( )= −К i�L  so that the initial condi-
tions (2.6), (2.8) become unit (0) (0) 1.= =U Y  
Note that this technique with quaternion K is im-
portant in the subsequent construction of the algo-
rithm of SINS orientation. The solution of the Cau-
chy problem (2.7), (2.8) will be written as follows:

 0 2 2 0( ) ( ) ,t= −i i �� � � �Y L F L  (2.9)
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We check the correctness of the obtained solu-
tion of the problem (2.7), (2.8) by differentiating the 
expression (2.9) taking into account (2.10)
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 0 2 2 02 ( ) ( ) /2t= −i w i �� � � � � �Y Y L L

herewith Y(0) = 1, that matches with expressions 
(2.7), (2.8).

On the basis of expressions of type (2.4) we asso-
ciate the reduced quaternion problem of determin-
ing orientation (2.3)—(2.6) with the problem with 
the vector approximate differential equation of the 
type (1.5):
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 (0) 0.∗ =х  (2.12)

We note that the homogeneous part of the vector 
linear differential equation (2.11) is equivalent to the 
solvable system (2.7) written in the form of a vector 
differential Poisson equation. From the Lagrange 
method of solving linear inhomogeneous differen-
tial systems of equations, the exact solution of the 
approximate equation (2.11) will have the form on 
the basis of (2.9), (2.10)
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We check the correctness of the obtained solu-
tion of the equation (2.12), (2.8) by differentiating 
the expression (2.13):
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Thus, the problem of determining the orienta-
tion of a rigid body (1.1)—(1.3) on the basis of (1.5) 
at small rotation angles is completely solved with 
the help of quadratures. We give the analytical al-
gorithm for determining orientation of a rigid body 
(SINS) at arbitrary angles of rotation:

1) using the components of angular velocity vec-
tor w(t) of a rigid body, functions μ(t), ν(t) are cal-
culated at each moment of time t by the formulas:
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2) vector w(t) is determined by the calculated 
μ(t), ν(t):
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3) the approximate value of the vector of finite 
rotation of a rigid body x* is calculated using vector 
w(t) and the initial position of rigid body L0:
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4) the components of quaternion U are deter-
mined by the vector x* on the basis of formulas of 
the type (1.4);

5) an approximate value of quaternion of a rigid 
body (SINS) orientation Lapprox is obtained
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Quaternion K should be selected in the form 

1 2( )m m−= −К i�L  when implementing the SINS 
orientation algorithm at each subsequent step m of 
algorithm. Then the initial value of variable x* will 
be zero each time.

Conclusion

In contrast to the algorithms for determining 
the orientation of an object described in [4, 5, 7]
using approximate numerical solutions of a trun-
cated equation for a vector of orientation of a rigid 
body and reading information about the angular ve-
locity of an object directly from sensing elements of 
SINS, the essence of the approach proposed in the 
article is that by first transforming this information 
using formulas (2.14), (2.15), the equation for the 
vector of the final rotation of a rigid body becomes 
clearly solvable by formulas (2.17). The quaternion 
on the basis of which the solution of the problem is 
built is written in elementary functions and quadra-
tures by formulas (2.16).
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