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The New Analytical Algorithm for Determining the Strapdown INS Orientation

Abstract

The analytical solution of an approximate (truncated) equation for the vector of a rigid body finite rotation has made it possible
to solve the problem of determining the quaternion of orientation of a rigid body for an arbitrary angular velocity and small angle
of rotation of a rigid body with the help of quadratures. Proceeding from this solution, the following approach to the construction of
the new analytical algorithm for computation of a rigid body orientation with the use of strapdown INS is proposed: 1) By the set
components of the angular velocity of a rigid body on the basis of mutually — unambiguous changes of the variables at each time point,
a new angular velocity of a rigid body is calculated; 2) Using the new angular velocity and the initial position of a rigid body, with
the help of the quadratures we find the exact solution of an approximate linear equation for the vector of a rigid body finite rotation
with a zero initial condition; 3) The value of the quaternion orientation of a rigid body (strapdown INS) is determined by the vector of
finite rotation. During construction of the algorithm for strapdown INS orientation at each subsequent step the change of the variables
takes into account the previous step of the algorithm in such a way that each time the initial value of the vector of finite rotation of
a rigid body will be equal to zero. Since the proposed algorithm for the analytical solution of the approximate linear equation for the
vector of finite rotation is exact, it has a regular character for all angular motions of a rigid body).

Keywords: analytical solution, algorithm, orientation, vector of finite rotation, arbitrary angular velocity, rigid body, strapdown
INS, quaternion
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HoBbIM aHaNUTUYeCKUM anropuTM onpeaerieHns opmeHTauum BUHC!

Ha ocHoge noayuennozo mounozo peuieHus npubAUNCeHH020 (YCeUeHH020) ypagHeHus 045l 6eKMOpa KOHeYH020 NO80poma
meepdozo mena ¢ NOMOWbH) Keadpamyp peuiena 3adaua onpedeieHus K6AMepHUOHA OpUeHmayuu meepdo2o meaa npu npo-
U3604bHOM 6eKMOpe YeA0680l CKOPOCMU U MAAOM yeae nosopoma meepdoeo mena. Hcxods u3 amoeo peuwienus npedrojiceH
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caedyruui n00xo0 kK NOCMPOEeHUI0 HOB020 AHAAUMUYECK020 AA20pUMMA 045 8bIMUCAEHUS OpUeHmayuu meepdozo meaa ¢ no-
mowbio BUHC: 1) no 3a0anHbiM KOMROHEHMAM 86eKMOpPA Y2A0680l CKOPOCMU Meepdo20 meada Ha 0CHOG8e 83AUMHO-00HO3HAHbLX
3aMeH NepemMeHHbIX 6 KadCOblil MOMEHm 6DeMeHU GbIMUCAAeMCs HOBbLI 6eKMOD Y2A080lU CKOPOCMU HeKOMOpOol HOBOU 66e0eH-
HOU cucmeMmsl KOOpOUHAmM; 2) UCHOAb3YS HOBbLU BeKMOpP Y2A080lU CKOPOCMU U HAYAAbHOE NOA0MNCeHUe meepdo20 mead, ¢ no-
MOWbI0 K8AOpaAmMyp HAX00UMCs MOYHOe peuleHue nPUGAUNICEHH020 NUHEIIH020 YPAGHEHUs 045l eKMOPA KOHEYHO020 HO8OPOmMA
C HYAeBbIM HAYAAbHBIM YCA08UEM; 3) NO 8eKMOPY KOHEHHO20 NOGOPOMA Onpedensiemcs 3HaA4eHUue K8amepHUOHAa OpueHmauuu
meepdoeco meaa (BUHC). Ommemum, umo npu nocmpoenuu asreopumma opuenmayuu BUHC na kaxcoom nocaedyruwem
waze 3aMeHa NepeMeHHbIX YHumoleaem npedvlOyuwjull wae aiecopumma maxKum oopazom, 4mo HaA4aibHoe 3HaA4eHUue 6eKmopa
KOHeuH020 nogopoma meepdozo meaa Kaxcooii pas 6ydem nyseevim. Ilockoavky npediaeaemolil areopumm aHAAUMUHECKO20
peuieHuss NPUOAUNCEHHO20 AUHEUH020 YPABHEHUS 045 6eKMOPA KOHEUH020 N0BOPOMA meepdoeo mena A6431emcs MoYHbIM, OH
HOCUM pecyasapHbII XapaKkmep Npu 6cex YeA08blX 08UdiCeHUAX meepdo2o meada.

Karueenie caosa: anasumuueckoe peuiteHue, areopumm, opueHmayus, 6eKmop KOHe4Ho2o noeopoma, npou36oabHaA A Yea0-

6as ckopocmv, meepdoe meno, BUHC, keamepHuon

Introduction

During operation of many strapdown inertial
navigation systems (SINS) the vector of a rigid body
finite rotation is periodically calculated by the meth-
od of approximate solution of the approximate linear
differential equation for the vector of finite rotation
(in the theory and practice of SINS construction, in
ultra rapid cycles of algorithms for small angles of
rotation, the nonlinear term in the differential equa-
tion for the vector of finite rotation of a rigid body
is neglected). The angular velocity vector of a rigid
body is the input quantity in the equation. Note that
the full nonlinear differential equation for the vector
of finite rotation of a rigid body is an analog of the
quaternion linear equation; the vector and the qua-
ternion of the rigid body orientation are linked by
known relations. The approximate linear differential
equation for the vector of finite rotation in the litera-
ture is solved by various numerical methods, for ex-
ample, by Picard’s method, then the second iteration
of this method in the practice of SINS can be taken
for the final one. This term in the iteration formula
of Picard’s method is called a non-commutative ro-
tation vector, or "coning". For certain motions of a
rigid body, this term makes a significant contribu-
tion to the error of the method. The study of non-
commutative rotations (or "coning") as a kind of me-
chanical motion of bodies, separation of numerical
algorithms for determining the orientation of a rigid
body (SINS) for rapid and slow counting cycles are
aimed at compensation for the effect of this phenom-
enon. Meanwhile, for some new angular velocity vec-
tor, which is obtained in determining the orientation
of a rigid body (SINS), based on the initial arbitrary
angular velocity vector in unambiguous interchanges
of variables in the motion equations for a rigid body,
the approximate differential equation for the vector
of finite rotation of a rigid body admits of an exact
analytic solution. We will show this.

The problem is to define the quaternion of orien-
tation A of a rigid body with respect to an arbitrary
given angular velocity vector (?) and the initial an-
gular position of a rigid body in space based on
the quaternion kinematic equation known as the
Darboux problem. Further, we make changes of
variables by the scheme A — U, where U is the qua-
ternion of the orientation of some introduced co-
ordinate system, it is always possible to reverse the
transition U — A. These changes have the character
of rotation transformations and reduce the initial
problem of determining the orientation of a rigid
body (quaternion A) with an arbitrary variable an-
gular velocity vector () to the problem where the
angular velocity vector w(?) of the introduced coor-
dinate system, remaining generally variable in ab-
solute value, performs a definite motion — rotates
around one of the axes of the coordinate system.
This motion is generalized conical precession and
agrees well with the known Poinsot’s concept that
any rigid body rotation about a fixed point can be
represented as a conical motion. Finding an analy-
tical solution of the quaternion differential equation
obtained with respect to the new unknown qua-
ternion U is still a difficult problem. However, the
equation differing from this only by the coefficient
"1/2" in the right-hand side (i.e., with the angu-
lar velocity vector Q(?)/2) is solved in closed form.
Moreover, we note that the quaternion differential
equation is isomorphic to the homogeneous vector
differential equation of Poisson.

The resulting problem with the angular velocity
vector Q(¢) and the unknown quaternion of orienta-
tion U is associated with the complete nonlinear dif-
ferential equation with respect to the unknown vec-
tor of finite rotation of a rigid body x. The approxi-
mate linear equation for the vector of finite rotation,
which is an inhomogeneous vector differential equa-
tion whose homogeneous part is equivalent to the
Poisson equation with the vector coefficient Q(r)/2,
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becomes analytically solvable and its solution x* is
obtained in quadratures by the Lagrange method.

The exact solution of the approximate linear
equation for the vector of finite rotation of a rigid
body made it possible to solve the problem of de-
termining the quaternion of orientation of a rigid
body for an arbitrary angular velocity and small
angle of rotation of a rigid body with the help of
quadratures. Proceeding from this solution, the fol-
lowing approach to the design of a new algorithm
for computation of SINS orientation is proposed:
1) by the set components of the angular velocity
of a rigid body on the basis of unambiguous inter-
changes of the variables at each time point, a new
angular velocity Q(f) of some new coordinate sys-
tem is calculated; 2) using the new angular velocity
and the initial position of a rigid body, we find the
exact solution x* of the approximate linear equation
for the vector of finite rotation with a zero initial
condition with the help of quadratures; 3) the value
of the quaternion orientation of a rigid body (SINS)
is determined by the vector of finite rotation on the
scheme x* » x < U — A.

During construction of the algorithm for SINS
orientation at each subsequent step the change of
the variables takes into account the previous step
of the algorithm in such a way that each time the
initial value of the vector of finite rotation of a rigid
body will be equal to zero. Since the proposed algo-
rithm for the analytical solution of the approximate
linear equation for the vector of finite rotation is
exact, it has a regular character for all angular mo-
tions of a rigid body.

Previously, the authors constructed the exact so-
lution of the Bortz approximate equation for the
orientation vector of a rigid body and the quaterni-
on orientation algorithm of SINS on its basis [1, 2].

1. Statement of the problem of determining
the orientation of a rigid body (SINS)

Consider the Cauchy problem for quaternion ki-
nematic equation [3] with arbitrary given angular
velocity vector-function w(#), written in the follow-
ing form (this problem is known as the Darboux
problem):

2A = A ca(?),
A(to) = A().

(1.1)
(1.2)

Here A(f) = Xq(#) + 1 (0)i} + Ay ()5 + X5(2)i5 is a
quaternion describing the position of a rigid body in

an inertial space; ®(f) = 0,(H)i; + ®,(?)i, + ©3(?)i;
is the angular velocity vector of the rigid body spe-
cified by its projections onto body-fixed coordinate
axes; iy, i, i; — the units of the hypercomplex space
(imaginary Hamiltonian units), which can be iden-
tified with the vectors of a three-dimensional vector
space iy, i,, i3; the symbol "°" stands for the quater-
nion product; A, is the initial value of the quater-
nion A(?) at t = t,, t € [t,, ©) (¢, set equal to 0). The
problem is to find the quaternion A(?).

The problem of determining of the vector of a
rigid body finite rotation x(f) [3] relative to an iner-
tial space can also be posed by solving the exact
differential equation for the vector of finite rotation
of a rigid body

X=0+Xx0/2+(X w0)x/4, (1.3)
where "X" and "(+, )" mean the vector and the scalar
products. In equation (1.3) the input quantity is the
angular velocity vector . Note that the nonlinear
equation (1.3) for the vector of finite rotation of
a rigid body x is an analogue of the quaternion
linear equation (1.1); vector x and quaternion A are
connected by the relations:

X =20, /A = 2etg(¢/2), € = A, /A7 + A3 + 2.2,

Xv = 7\.1i1 +7\.2i2 +}\,3i3,
cosQ="hg,sing=yAi +13+13,0<p<m,

where ¢ is the angle of orientation of a rigid body
and e — the Euler axis of rotation. In the practice
of constructing of SINS orientation algorithms by
numerical solution of equation (1.3) on a time
interval ¢, <t<t, the third member in this
equation is neglected for small angles of rotation
(it is the magnitude of the second order). If the de-
rived simplified (approximate) differential equation

(1.5)

is solved by Picard’s iterative method, then the
second iteration of this method is taken for the final
one [4, 5]:

(1.4)

X"=o+Xx" xo/2

X, = tf (o(t)dt + a(t) x o(1)/2)dt =), + B,,,
a(t) = tf o()ds, a,, = alt,),

tn-1
B() = | a(t)xe(r)dt/2, B, = blt,),

Im-1
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where vector B is called a non-commutative rotation
vector, or "coning”. For certain motions of a rigid
body, this term makes a significant contribution to
the error of the method. The study of non-com-
mutative rotations (or "coning") as a kind of me-
chanical motion of bodies, separation of numerical
algorithms for determining the orientation of a rigid
body SINS) for rapid and slow counting cycles are
aimed at compensation for the effect of this phe-
nomenon. Meanwhile, for some new angular velo-
city vector w(f), which is obtained in determining
the orientation of a rigid body (SINS), based on the
initial arbitrary angular velocity vector o(?) in un-
ambiguous replacements of variables in the motion
equations for a rigid body, the approximate equa-
tion for the vector of finite rotation of a rigid body
admits of an exact analytic solution, which will be
shown in what follows.

2. The exact solution of the approximate equation
for the vector of finite rotation of a rigid body
and design of the algorithm for determining SINS
orientation on its basis

Let’s write unambiguous replacements of vari-
ables in the problem (1.1), (1.2) [6] according to the
scheme A — U, where U(?) is the quaternion of ori-
entation of some introduced coordinate system (new
variable), quaternion V(7) is the generated transition
operator, K is an arbitrary constant quaternion:

A = U0 K VO, [K|=[V] =1 @D
V(t) = (—i; sin N(#) + i, COSN(#)) o 22
o exp(i3N(#)/2) = exp (i,Q(1)/2),

2U=U-Kow(r)oK, 2.3)

w(t) = u(t) (—i; sin N(#) + i, cos N(7)) — 2i3v(1), (2.4)
w(r) = 0,(r) cosQ(t) — o5(¢) sin Q,(¢),

V(7)) = 0,(2) sin Q(f) + m5(t) cos Q,(7), (2.5)
N(7) = Jt.v(t)dr, Q@)= Jt'oal(r)dr,
0 0
U(0) = Ay o (-iy) oK (2.6)

where (2.3)—(2.6) the new problem for determining
the orientation of a rigid body with the new angular
velocity vector w(?), "||*||" means quaternion norm.
Finding an analytical solution to the resulting
quaternion differential equation (2.3) remains a dif-

2¥ =¥oKow(r)oK/2,
P(0) = Ao (-iy) oK

.7)
2.8)

is solved in a closed form. Choose quaternion K in
the form K = A (-i,) so that the initial condi-
tions (2.6), (2.8) become unit U(0)=¥(0)=1.
Note that this technique with quaternion K is im-
portant in the subsequent construction of the algo-
rithm of SINS orientation. The solution of the Cau-
chy problem (2.7), (2.8) will be written as follows:

\P=AO 0(—i2)0(D(t)0i2 0;\0, (29)

®(1) = exp (i,M(t)/4) o exp (~isN(t)/2),

! 2.10
M(¢) = ju(r)dt. (210)
0

We check the correctness of the obtained solu-
tion of the problem (2.7), (2.8) by differentiating the
expression (2.9) taking into account (2.10)

W(1) = Ay o (-iy) o ®(F) o (u(r) exp (isN(1)/2) o

o iy oexp(-i3N(2)/2) /4 —i5v(t)/2) oy o Ay =
=W(t)o Ay o (—iy) o () (—il sin N(#) +1i, cosN(?)) -
= 2i30(1)) ey o Ay /4

or otherwise

2\P:‘I‘OAO 0(_i2)OW(t)0i201~\0/2

herewith ¥(0) = 1, that matches with expressions
2.7), (2.8).

On the basis of expressions of type (2.4) we asso-
ciate the reduced quaternion problem of determin-
ing orientation (2.3)—(2.6) with the problem with
the vector approximate differential equation of the

type (1.5):
X* = AO 0(—i2)0W(t)0i2 OAO +
+ X" x (Ag o (—iy) oW(t) oy o Agy)/2,
x"(0)=0. 2.12)

We note that the homogeneous part of the vector
linear differential equation (2.11) is equivalent to the
solvable system (2.7) written in the form of a vector
differential Poisson equation. From the Lagrange
method of solving linear inhomogeneous differen-
tial systems of equations, the exact solution of the
approximate equation (2.11) will have the form on
the basis of (2.9), (2.10)

@.11)

X" = Ay o (-iy) o B(1) o

ficult task. However, the equation that differs from : ) y 2.13)
this one only in the coefficient "1/2" on the right o[ ®(1) o W(1) o ®(1)dT o ®(f) 0y 0 Ay.

side (i.e. with the angular velocity vector w(f)/2) 0
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We check the correctness of the obtained solu-
tion of the equation (2.12), (2.8) by differentiating
the expression (2.13):

x* = Ko (D) o j'q)(‘r) o W(t) o D(1)dt o D(F) o W) —
0
—w(t) o ®(t) o jcp(r) o W(t) o D(1)dt o ®(f)) o K/4 +
0

+ Kow(®) oK =Ko (®()o jcp(r) oW(1) o D(1)dx o
oCI)(t)of(oKow(t)—w(t)oof(oKo(i)(t)o

o Jt'(I)(r) o W(t) o ®(1)d7 o ®(1)) o K/4 +
+0Kow(t)oK =x" x(Kow(t) o K)/2+Kow(r) oK.

Thus, the problem of determining the orienta-
tion of a rigid body (1.1)—(1.3) on the basis of (1.5)
at small rotation angles is completely solved with
the help of quadratures. We give the analytical al-
gorithm for determining orientation of a rigid body
(SINYS) at arbitrary angles of rotation:

1) using the components of angular velocity vec-
tor @(?) of a rigid body, functions u(¢), v(¢) are cal-
culated at each moment of time ¢ by the formulas:

Q@) = _t[oal (r)dr,
0

w(t) = @, (1) cos Q,(7) — o5(¢)sin Q,(¢), (2.14)
V(1) = ©,(¢) sin Q(?) + m5(¢) cos Q,(?);

2) vector w(f) is determined by the calculated
(), v@:
t
N@) = |v(t)dr,
® (j) (v)ds (2.15)
w(t) = p(t) (—i; sin N(7) + i, cos N(¥)) - 2i3v(r);
3) the approximate value of the vector of finite

rotation of a rigid body x* is calculated using vector
w(?) and the initial position of rigid body Ay:

M(t) = IM(T)de
0

@(t) = exp(i,M(?)/4) o exp(-i;N(1)/2),

2.16)

x* = Ko®(t) o (j)q)(r) o W(1) e @(1)dT o ®(7) < K, (2.17)

K=Ajo(-y);
4) the components of quaternion U are deter-

mined by the vector x* on the basis of formulas of
the type (1.4);

5) an approximate value of quaternion of a rigid
body (SINS) orientation A%’P"°X is obtained

APPT* = U(t) o Ko (—i; sin N(#) + i, cosN(?))
oexp (i3N(7)/2) o exp(i,Q(7)/2).

Quaternion K should be selected in the form
K, =A,_°(-i,) when implementing the SINS
orientation algorithm at each subsequent step m of
algorithm. Then the initial value of variable x* will
be zero each time.

Conclusion

In contrast to the algorithms for determining
the orientation of an object described in [4, 5, 7]
using approximate numerical solutions of a trun-
cated equation for a vector of orientation of a rigid
body and reading information about the angular ve-
locity of an object directly from sensing elements of
SINS, the essence of the approach proposed in the
article is that by first transforming this information
using formulas (2.14), (2.15), the equation for the
vector of the final rotation of a rigid body becomes
clearly solvable by formulas (2.17). The quaternion
on the basis of which the solution of the problem is
built is written in elementary functions and quadra-
tures by formulas (2.16).
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