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Abstract

A new approach is presented for sensor fault detection reconstruction and state estimation. The system considered is linear polytopic
parameter-varying (LPV) system. The main idea is the design of a novel robust adaptive observer based on and polyquadratic
Sormulation with a new set of relaxation. Sufficient conditions are given by a set of Linear Matrix Inequalities (LMI) in order to
guarantee the stability of the system and the asymptotic convergence of the fault error. A simulation example has been studied to
illustrate the proposed methods by detecting constant and variable sensor fault.
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1J1a6opaTopV|;| pPOOOTOTEXHUKN, MHPOPMATUKM U CITOXKHbBIX CUCTEM,
HauunoHanbHag nHxeHepHas wkona TyHuca, YHusepcuteT TyHuc-Onb-MaHap, r. TyHuc, TyHuc
2I/IHCTl/lTyT WHOPMALMOHHO-KOMMYHMKALMOHHBLIX TeXHONOrun, YHusepcuteT KapdpareHa, r. TyHuc, TyHuc

KoHcTpyKuMa aganTuBHoro Habnoaartens
ANSA BbISIBMEHUSI U MOAENUPOBaHUSA OWMGOK AaTumKa'

Ilpedcmasnen HoBbLE NOOX00 K 8bl6AEHUI0 OUUOOK 0AMUUK08, UX MOOCAUPOBAHUIO U OueHKe cocmosanus. Paccmampuea-
emas cucmema npedcmagnsem cob60i AUHEUHYIO NOAUMONHYIO CUCMEMY C U3MeHauumucs napamempamu. Ocnosnas uodes
3aKAYAemMca 6 HOPpMUPOBAHUU HOB020 HAOEHCHO20 A0ANMUBHO20 HAOAOamens 8 pamKax NoAuKeaopamu4eckoeo nooxooa
¢ HOBbIM PeNaKCayUOHHbIM MHOMCecmeom. Jocmamounvie ycaoeus 3a0amcs HAOOpom AUHEUHbIX MAMPUHHBIX HEPAGEHCMSE,
Komopble 2apaHmupyom yCcmouuugocms CUCmeMbl U ACUMRMOMUYECKYI0 CX00UMOCMb OUeHKU owuoKku. [isa uisiocmpauyuu

UCNOAB30BAHUSL NPEONOICCHHBIX MemO0008 npugedeH npumep Moo0eaupo8anus, 8 KOMopom ocyuwecmeisemcs uoeHmuuxkayus
NOCMOAHHOU U nepeMeHHOU owmubKy dam4uka.

Karueevie caosa: adanmuenoiii Haﬁﬂio()ameﬂb, gblsigAeHUE OUUOOK 0amlm1¢a, OUEHKA cOCMoAHUA, NOAUMONHAA AUHeUHas
cucmema ¢ USMeHAWumuca napamempamu, AUHeUHble mMampu4Hsle HepaeeHcmeda

ICraThsl MOArOTOBJIEHA HA OCHOBE PE3YJBTATOB, MOJIYUYEHHBIX B PAMKAX MPOEKTA, BHIIOMHSIEMOro coBMecTHO ¢ FODY mo rpaHTy
POD®U Neo 16-08-00013.
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Introduction

Process monitoring and fault diagnosis are a
complex and vital operations to ensure the real-time
control of process variables and thus to predict any
failures. These operations are increasingly difficult
to perform more particularly when the system is dif-
ficult to model, or when some measurements are in-
accessible. Indeed, diagnostic methods do not have
universal characteristics. Prerequisite to designing
such methods is to take many real factors such as
processes’ nature, varied input, and systems’ pa-
rameters into account.

On the other hand, a system can be subjected
to several types of faults, mainly two called sensor
and motors [35]. A defect can arrive and damage the
normal operation of a system and cause catastrophic
consequences such as aircraft or nuclear explosions.
As a result, the properties of the system change [4].
Thus, the role of control strategies is to enable early
monitoring and a diagnostic process. In light of this,
the primary goal of early detection of defects is to
ensure the full performance of the system.

Over the last two decades, the fault detection
and state estimation in non-linear systems have re-
ceived the attention of a plethora of research which
spawned a varity of algorithms designed to perform
such estimation. The proposed so-called adaptive
observer is particulary, one of them. Based on a
dynamic model process, this observer can be de-
scribed as the sum of the senser-measured signals
and the estimation of unmeasured signals.

Initially, many studies carried on adaptive observ-
ers were motivated by adaptive control, and more
recently there have been driven by industrial pro-
cess supervison. In this context, each proposed tech-
niques depend on the vary specific system affected
by the fault. References [11, 15, 20], for instance,
have focused on the study of an adaptive observer for
uncertain nonlinear systems. Their objective was to
detect and isolate sensor faults in a distributed man-
ner. In [5], the detection and the isolation of actuator
and/or sensors faults for the nonlinear systems were
considered. However, [17] propose a novel algorithm
to estimate and accomodate fault in the case of
nonliear time-varying delay systems. In their work,
a neural network has been used to design an observer
for the detection of a single sensor faults as in [16].
Regarding the class of linear systems with variable
parameters, we have have suggested several studies.
For example, we cite [6] where the authors have pre-
sented a construction approach of a sensor fault sig-
nal and a reconstruction of the state for discrete-time

linear time-varying systems. Unlike the work [18],
which presents the sensor fault detection for the class
of LPV descriptor systems being performed with ne-
glect of all forms of noise, this approach takes ac-
count of all disturbances that may effect the system.

This paper is an extension of the work presented
in [19] where the authors proposed an adaptive algo-
rithm to estimate engine failure and a sensor detect
it in the case of linear system. We place our focus, in
this work, on the sensors faults, in particular. Most
commonly, two methods are applied in the recon-
struction of the sensor fault signal. The first was de-
veloped in [19] proposing a change of variable that
allows considering the sensor failure as an internal
engine failure. While in the second method, studied
in [0, 18], the fault variable is introduced as a term
of the state vector.

In the present work, we limit ourselves to the
first method. We propose a new appoaches in order
to estimate sensor fault for for linear parameter-
varying (LPV) systems. Based on polyquadratic so-
lution, the observer disign is described by un opti-
mization problems formulated in terms of LMI. In
the case of polyquadratic oberver design, we use a
relaxation solution to avoid the BMI problems.

The paper is organized as follows, in Section 2
we present the sensor fault principle estimation for
LPV systems with quadratic conditions. In the sec-
tion 3, we develop a new adaptive polyquadratic ob-
server on the bases of LMI terms.

Notation. The following notations are used:

A B A B
sym(4) = A + A7, { C} - {BT c}’ 0 = p(0(?)).

System description
Let us consider a continuous-time LPV system:
x(t)=A(0®)x(t)+ B(0)u(t);
{y(t) =Cx(t)+¥(0) f; (7).

Where x e R", ue R”™ and y e R” are respec-
tively, the state space vector, the input, and the output

1

of the system. f,(f) e R" is the sensor fault vector.
It is assumed that 6 is bounded and also lid in
a convex polytopic domain of vertices such that:

© = {6(t) € R?|0, e [0M", 0Mmax] .,

min nmax (2)
0, e[6,",05]}.

Where e;‘““ and 0", i =1, ..., p defined,
respectively, the lower and upper bounds of the
parameter.
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The matrices A(0), B(0) and ¥(0) of the LPV sys-
tem (1) depend affinely on 6. The system (1) is de-
fined as a convex interpolation of the vertices of ©.
Then, the vertices of the polytope are defined as:

©)

where A;, B, ¥; are constant matrices of appropriate
dimensions.

The parameter p(6(f)) denotes polytopic coordi-
nates. It is assumed to vary into the convex set as [29]:

S; =14;,B;,¥,;,C], Viell,...,n],

p(0(1)) € R", p(0(1)) = [p;(6(7)), ...,

N
s P (OEN],p;(8(1)) > 0, Vi, %P;(e(f)) =1

(4

The system (1) is represented by a convex com-
bination of each vertex S;:

() = %pxe(r))(Aix(t) + Bu(r)):;

) 5)
y(1) = Cx(1) + 21 pi (B())(Y, f,(1)).
Assumption 1.
rank(C¥,)=r, Vi=|[l,...,N]. 6)

Assumption 2. The triple matrix (4;, C) is
observable for all i [l,..., N].

Adaptive polytopic observer design
Consider a new state z(f) € R? such as:
(1) = —A,(0)2(r) + A, (0)Cx(r) + A (0)¥(0) f(2), (7)

where A (0) e R”*? is a time-varying matrix.
Denote the following augmented system:

X0y =[x"(0) ")
Then the new state presentation is given by:

{f«z) = A(B)X(7) + B(O)u(r) + F(0) £,(7);

Y (@) = CX(1):;
a2

} and C=[0 1,]

A(0) 0

A0) = Lls(mc _A,(0)

(®)
_ 0

o= Lls(eme)
with the new fault f,(?) = f4(?),

where  A(0) e R"PXP), - B(g) e RO,
¥(0) e R and C e RPXHP),

Remark 1. With the idea of introducing an
augmented system, the observer synthesis problem
of system (1) subjected to sensor fault returns to
an observer synthesis problem applied to the new
system (8) subjected to an actuator fault.

For a polytopic LPV system (8), an adaptive
polytopic observer is described by the following:

X(6) = A(0) X (1) + BOu(t) +

+ P(0) /(1) - LO)Y () - Y (1));
Y(t)=CX().

)

Where X (¥) and )A’(t) are the state estimation
vector and the estimated system outputs. f,(7) is
the fault estimation. The gain matrix is defined by
the following polytopic form:

N
L(6) = ZOP,-(G(I))Lp (10)
iz

Where L, represents the gain of i vertex.

Remark 2. Since it has been assumed that the
pair (4;, C) is observable, the gain matrices L; can
be selected such that (4; — L;C) is stable.

Denote ey (), ey (7), e (¢) are respectively state

estimation error, output estimation error, and fault
estimation error:

ex() =X -X();
e () =Y()-Y(1);
e, (1) = f,(t)- F ().

Then, the error dynamics are expressed as
follows:

(11)

) N _ _ _

ex(t) = ;)pi(e(t))(Ai - LC)ey (1) +Ye, (1); (12)
ey (1) = Cey(1). (13)

The default £,(7) is constant, hence fs(t) =0 [23].

Consequently, the derivative of e (t) with respect
to time can be written as:

¢,(0=10). (14)

The state observer (9) is combined with the law
of the fault estimation updating of the form [23]:

7(t) = -TF@©)2 (1), (15)

where F e R™? and ' e R™ is the learning rate.
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It should be noted that a modification of (15) is
presented in [23] and [24] for time varying f,(f) in
the form:

F() = TFO)@ () +0e,(0),  (16)

where o € R is a positive scalar and can guarantee
limey(#) =0 and lime, (r) =0.
t—o t—o 7S

Main result

Consider the LPV system described by (1) with
an additive sensor fault. In this section we propose
a new adaptive observer for LPV polytopic system.
For this, we use the parameter-dependent Lyapunov
function to ensure stability condition. We introduce
some instrumental tools which will be used in the
proof of this observer characterization.

Lemma 1 [23]. Given scalar p > 0 and symmetric
positive definite matrix P(p) the following inequality
holds:

Proof
The proof is obtained remarking that (20) can be
developed as follows:

) J+ NX
JT+ XTNT _x-xT|

P USSR

and by applying Lemma 2. &

We propose in the following our main contri-
bution given by Theorem 2. It consist in a con-
vex optimization problem allowing the synthesis of
a poly-quadratic adaptive observer checking LMI
constraints as stated below.

Theorem 1. Under the Assumptions 1, 2 and 3,
the system (9) is an adaptive observer for the system
(1) with (8) if, for given scalars 8 > 0, u > 0, o > 0,
n > 0, there exist, for each vertex, asymmetric posi-

tive definite matrix P, e R™, L, e R™, G eR"™"

2D

T | T -1 " and X, e R™" such that the following conditions
2X Y<EX PE)X +uY " P (p)Y, X,YeR".(A7) ' 1514
Lemma 2. (Projec- [ .
tion Lemma) [27] G.1— 9P, - 2P + sym(P,.Zj) EZ,'TPI"T’k P+X, P-aCTIT
ven a symmetric matrix c
y € R and two ma- 257py . L 257,
trices P, Q of column Vi by, + 2HGG 0 o Yifi <0, (22)
dimensions »#n, there T
) -X,-X 0
exists X such that the ! . ! 5ol
following LMI holds: L —a J
TyT _ _
Y +sym(PTX70) <0. (18) [nl qup,.;pic} o, 23
‘ n

If and only if the projection inequalities with
respect to X are satisfied:
NYNT <0, N]JYN, <0. (19)
Where N, and N, denote arbitrary bases of
the null spaces of P and Q respectively.
Proof See [27] m
Lemma 3. Let ® a symmetric matrix and N, J

matrices of appropriate dimensions. The following
statements are equivalent:

H®<0and @+ NJT +JINT <0.
ii) There exists a matrix X such that:

() J+ NX

<0.
JT+ xXTNT _x - xT

(20)

The gain observer matrix of the system (1) is
given by the following polytopic form:

24)

Proof

With respect to the system parameter, it is clear
that ey (¢) is linear. Thereby, consider the polytopic
Lyapunov function defined by:

Viey(r),es (1)) =

_ el PO ) el e 1),

where P(6)>0 is a symmetric positive defined
matrix. The derivation of (25) is:
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V(ey(r),e; (1)) = éx () P(B)ey (1) +

+ ey () P(O)ey (1) + ey (1) P(0)ex (1) +

+ ef Tyt ep(+e (t)F ef () =

= ((A(®) - L(O)C)ey (1) + P(0)e, (1)) P(O)ey (1) +
+ 25 (P(O)(A(®) - LO)C)ey (1) +

+fTor'e, +efor'f 7 ()=

=2y (1)((A(0) - L(O)C)" P(0))ey (r) -
—e[ (NTT'F(0)Cey (1) + ex (1) P(0) (A(6) -

- LO)C)ey (1) + &/ (P (0)P(0)ey (1) +

+ ey (N PO)P(0)e (1) — ey (NCT F(p)I'T'e; (1) =

=2y (N[(A0) - LO)C)" P(6) +

+ P(0)(A(8) - L(O)C)Jex (1) + €[ () [¥7 (8)P(6) -

— FO)Clex (1) + 4 (N[ PO)F(0) - CT F(B)Je, (1) (26)
Thus, it is verified that:

(A(0) - L(©)C)" P(6) + P(6) (A(6) - L(0)C) < 0; (27)

T (0)P(©O) = F(O)C. (28)
||

Replacing ey (7) and e - (1) respectively with the
expressions (14) and (15) and using (27) and (28):

V(ex(n),e., () =
= ((A(8) - L(O)C)ey (1) + F(0)e, (1)) P(O)ey (1) +
+ ey (N P(O)((A(6) - L(e)@ )ey (1) + P (0)ey (1)) +

+ex(t)P(9)€x(f)+ (f (1) = f, ()T "e, (1) +

+;éff O (f,(0) - £,(0)). (29)

Then, by replacing 7S(t) using (16) in the ex-
pression, we get:

V(ey(t),e. (1) = ey ()[P(0) +
+ (A(0) - LO)C)" P(6) + P(0)(A(0) - L(O)C)Jey (1) +
- é} (r)\?ﬂe)P(e)Ex (1) + ey (PO)FT (O)e, (1) -
——ef F(or'f, (t)+
=gy (N[ P0)+ (A(e) L©)C)" P(6) + P(0)(A(6) -
~LO)C)Jey (1) + [ ()P (0)P(0)ey (1) +
+ex (NPOP (0), (1) - —é}; O f(0) +

o

n %?E (T [-T F(O)C(&y (1) + 52y (1))]. (30)

ef (O '[-TF(0) (y (1) + oey (¢))] =

After development and simplification we obtain:

Viey @), es(n)=
= ey ([ P(6) + (A(6) - L(O)C)" P(6) +
+P(0)(A(6) - L(0)C) Jey (1) -

—36} (FT (0)P(0)(A(B) — LO)C)ey (1) -

——e FOFT(0)PO)T(0)e, (1) ——eT (Or~'f,0). 31
Using Lemme 1, we can demonstrate that:

2[—21efj ) <

2 (32)
< ZM_(;E};(I)GEJIS (t) + %‘flz}\’max(r_lG_lr_l);
V() < T ()= + 6, 33)
where
_lex (?)
&) = {Efs ( I)}. (34)

Based on (32), the equation (31) can be expressed
by the following inequality:

[ P(0) + sym((A(6) — 1
~L(0)C)" P(6))
2y 0 (35
_E\P (O)P(O)X ——\PT(G)X < ( )
X ((A(e) L(©)C)) X P(0)¥(6) o G

|
The parameter dependent Lyapunov function is
assumed to be measurable [28]:

o) =[0,(1) 0,(1) - 0,(1)] eR". (36)

Assumption 3 [28]. The state-space matrices
(A(8), B(0)) are continuous and bounded functions
and depend affinely on p(0).

Assumption 4 [28]. The real parameters p(0) that
can be known by on-line measurement values exist
in LPV system and vary in a polytope © as:

p(?) € © with
= {%ai(t)wi:ai(t) >0, %Oﬁi(f) =LN = 2’} (37)
i=1 i=l1
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and the rate of variation p(¢) is well defined at all
times and vary in a polytope ©, as:

p(t) € ®, with
N N
0, :{l;lﬁk(t)vk:ﬁk(t) >0, Elﬁk(f) =LN=2 } (38)

Unfortunately, (46) is not convex in P and L,
then, it cannot be solved by the LMI tools.

We can introduce some transformations to simplify
the P(p), L(p) and C terms of the inequality (46).

We suppose that:

|
|
|
|
|
|
|
|
|
|
|
l [ 9P(0) - 2P(0) + T
Then | =
’ ! + sym(P(0)A(0))
|
P = )
dre) X N ~ P D= ~Z9T(0)P(0)F(0) + | (43)
—= (NPH(vy) = (N(P(vi) = Py); (39) 2= -
ar ~ ZP P = 2B - Fo [ veredn
. N N | +2—G
P(0) = 3p,(0)P,, 3, =0. @0 L ho :
i=1 i=1 i NT Ji 0 . »
The rate p(#) can be represented in several ways. ! “|-L@®)C 0 (44)
In fact most of the time, it is difficult to give its | P(o P(6
adequate modeling. For LPV system, the derived | ; ©) (©) 45
parameter does not vanish as in the LTI case. i 1o 2 FT0)P@O) | 3)
In our case, we suppose that [25]: ! o
|
: X, O
p(0) < 8p(0). (41) i By Lemma 2, there exists a matrix X = [ Ol [}
| (04
Th !
. _ i of appropriate dimensions such that inequality (46)
P(6) = 9 P(6). 42) 1 is satisfied.
9 P(0) — 2P(0) + sym(P(0) A(0)) —EAT(e)P(e)\?(e) P@O)+X, P®) -aCTL'(0)
(e}
2 — — 1 2 —
~ 29T (0)P(O)F(O) + — G 0 ~Z9T@O)P®O) |0 (46)
c 2uc c
X, -x! 0
i 0 2ol
Hence, (46) can be rewritten as:
NN N
2.2 2.pi(6(1))p ;(6(2))p (6(2))= < 0;
i=1j=1k=1
9P -2P +sym(PA) -~ APY, P+X, P-aC'L]
47)
= —3\?{3\?%#0 0 —Ex?fp,.
= c 2uc c
X, - X7 0
i 0 20l |

Remark 5. The main advantage of the theorem 1
given earlier will appear when dealing with poly-
quadratic adaptive observer. In fact, the new convex
optimization problem allows to guarantee a robust
stability of the error which means that as long as
LMI is feasible the variation of the parameters 0(7)
is always tolerated.

Numerical example

In this section, we propose the example of sin-
gle-link arm (Fig 1) [30]. The system is described
by the following equation:

Jig, + Figy + k(g — q,) + mglsin(q,);

I + Fud —k(fh —42) =u.

48)

520
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b .

Fig. 1. Single-link robotic arm, with a revolute elastic joint,
rotating in a vertical plane [31]

Then, the state space is written as:

0 1 0 0]
S T
Xy | oo L X2 N
X0 L0 0 0 0 | x
Xy K 0 —k  —Fy |Lxs
I I I
- . - 49
0 49
_mglsin(xl) 0
1 ni.
" 0 "ol
u 0
L Jm _
100 0] o0
X
y=10 0 10 x2 +|d, | +B(t-Ty) Fo.(50)
000 1|77 |d
X4

The proposed model has been linearized and as-
sumed to an LPV model in [30]. In this paper, we
consider that the LPV state space is described by:
X| = Xp;

Xy = [Jilj (K(x3 = x1) = Fixy — mgl(sin(x,) + d));

X3=.7C4; (51)
Xy = (JLJ (K(x) — x3) = F,x4 + k.u),
%] 0 10 07x] [0
% |-1-9,80x) 0,25 1 0|x,| [0
%5 0 0 0 1| x| 0"
X4_ 2 O —2 —1 X4 1
] (52)
1000 )’51 0 0
y={0 0 1 0| 2|+|1 0|£(®).
000 1] |01
I .

Table 1
Values of parameters of the single-link robotic arm [30]

4 the link displacement
q; the rotor displacement
Ji the motor rotor inertia 2
I the motor rotor inertia 1
k the elastic constant 2
m the link mass 4
g the gravity constant 9,8
1 the center of mass
F,, F,, | the viscous friction coefficients F, =05
and F, =1

Where x|, x,, x5 and x, are, respectively, the link
angular position, the link angular velocity, the mo-
tor angular position and the motor angular velocity.
Table 1 summarizes the values of the different pa-
rameters. In this example, the state x;, x; and x, are
available for measurement. The torque provided by
the motor is considered as the control input, u. We
consider that ¥ = 2sin(?) and 8(x) = sin(y,)/y;.

The sensor fault is assumed as the following:

i)

Two sensors in the single-link arm are subject to
faults; the velocity and the measurement of the mo-
tor’s angular position.

Model (59) is a quasi-LPV system, thus, we can’t
apply the algorithm directly. The parameters’ trajectory
is given by the behavior variable 6(X) € [0, Omaxl-
If we consider x e [—x,, xyl, X, < n/2, we obtain
Opin =0 =—2/n and 6,,,, = 6 = 2/n.

The vertex model of the single-link arm is rep-
resented by both local models. Similar to [14], the
weighing functions are computed as the following:

(53)

0-0 0-0
9 :_—_; e = =
p1(6) 9-0 Pz()

o (54)

For simulation purposes, we choose an arbitrary
value of 6 as 1/n and the obtained p; verifies (3).
LPV representation of the dynamic system is de-
scribed by the following set of matrices:

0 1 00 0 1 00
4 _|52025 10| |-7.240251 0
! 0 0 0 17 0 0 01
2 0 -2-1 2 0 -2-1

We applied two types of faults to verify the effi-
ciency of the algorithm; varying and sinusoidal faults:
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* avarying fault as:

e a sinusoidal fault as:

f1<r>={

0, ifr<10;
10, if10<r<15;
0, if 15<¢<30;

t =

A 20, if 30 <r<60;

0, if 60 <r<80;
50, other

0, if ¢ <50;

1,2+0,8sin(0,4rt), otherwise.

Poly-quadratic Observer: Application of Theorem 1

By taking the same condition, and applying the
Theorem 1 (30), the solution is computed and the
observer matrices are determined as follows:

00 0 0 0 0
00 0 0 0 0
0 0 01102 0,0064 -0,0013 -0,1090
P =0 0 0,0064 0,1178 -0,0236 0,0172
0 0 -0,0013 -0,0236 0,0047 -0,0034
0 0 -0,1090 0,0172 -0,0034 0,1125
0 0 -0,0168 -0,1067 0,0213 -0,0046
[0 0 0 0 0 0
00 0 0 0 0
0 0 0,1109 0,0067 -0,0013 —0,1096
P, ={0 0 00067 0,1182 -0,0236 0,0169
0 0 -0,0013 -0.0236 0,0047 -0,0034
0 0 -0,1096 0,0169 -0,0034 0,1130
0 0 -0,0171 -0,1071 0,0214 -0,0043
| e ToTmomTTTOTTITTTTTTTTTT 1
| |
| |
: 50f R :
N 7 |
B E— l
| £ l
e |
3 |
S |
-t |
[ |
|20 |
| |
T |
) |
| |
| |
: -10 : ‘ ‘ ‘ ‘ ‘ s w | |
| 0 10 20 30 40 50 60 70 80 90 100 |
| Time(s) !

Fig. 2. Behavior of varying sensor fault and its estimate using the
polyquadratic approach

0,1640
0,0239
0,0944

10,0789

0,0282
0,0070
-0,0185

70,1640
0,0240
0,0946

-1 -0,0808

0,0286
0,0065

0,0442
0,0144
0,3290
-0,0417
0,0100
0,0266
-0,0077

0,0451
0,0142
0,3281

0,0440
0,0096
0,0270

~0,1556]
~0,0077
0,0481
0,1561 |;
~0,0175
~0,0068
0,0198 |

~0,1564
-0,0076
0,0476
0,1596
~0,0174
~0,0066

-0,1067 |;

|-0,0168 -0,0058 0,0168 |

The sensor fault estimation result
in the case of the varying sensor and
sinusoidal faults using the adaptive
fault estimation observer is depicted in
Figure 2 and Figure 3.

Fig. 2, 3 shows the varying and sinu-
soidal-like fault and its estimate. From
the above given figures it is obvious
that the the adaptive observer descri-
bed by the theorem 1, which parame-
ters are obtained as a solution of the
LMI problem specified by Theorem 1,
can with sufficient precision approxi-
mate given class of warring faults that
their impact on the system variables is
successfully compensated.

40 60 80 100

Time(s)

120

Fig. 3. Behavior of sinusoidal sensor fault and its estimate using
the polyquadratic approach
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Conclusion

A new sensor fault estimator for class of polytopic
LPV systems has been designed in this paper. The
approach is described by a convex optimization
problem in terms of LMI. The solution scheme is
applied to an augmented system, where the sensor
fault is considered as an actuator fault. Finally,
a numerical example is provided to illustrate the
effectiveness of the proposed theory.
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