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Abstract
A novel robust algorithm is proposed for control of plants under parametric and structural uncertainties, as well as, external 

bounded disturbances. The algorithm design is based on the modified backstepping approach that allows to compensate mismatched 
disturbances under presence of nonlinearities. The obtained results are extended to control of network systems with nonlinear agents 
and with nonlinear links in the presence of mismatched disturbances. Effectiveness of the proposed algorithm is demonstrated on 
control of a distillation column which is described by parametric and structurally uncertain differential equation in presence of external 
bounded disturbances. It is assumed that only scalar input and output of the distillation column are available for measurement, but 
not their derivatives. The developed algorithm provides output tracking of a smooth bounded reference signal with a required accuracy 
at a finite time. The synthesis of control algorithm is separated into ρ steps, where ρ is an upper bound of the relative degree of the 
distillation column model. Therefore, the dynamical order of the proposed algorithm is equal to ρ. The sufficient conditions of the 
closed-loop stability is formulated and proved by using methods of stability of singular perturbed differential equations and Lyapunov 
functions. The simulations illustrate effectiveness of the proposed algorithm and confirm analytical results.

Кeywords: backstepping algorithm, mismatched disturbance, reference model, tracking, distillation column

Разработан новый робастный алгоритм управления динамическими объектами в условиях параметрической и 
структурной неопределенностях, а также действия внешних ограниченных возмущений. Для синтеза алгоритма 
используется модифицированный метод бэкстеппинга, позволяющий компенсировать несогласованные возмущения 
в нелинейных системах. Полученные результаты расширены на случай управления сетевыми системами с нелиней-
ными агентами и нелинейными связями при наличии несогласованных возмущений. Эффективность работы пред-
ложенного алгоритма продемонстрирована на управлении дистилляционной колонной, которая описывается пара-
метрически и структурно неопределенным дифференциальным уравнением с внешними ограниченными возмущения-
ми. Предполагается, что для измерения доступны только скалярные входные и выходные сигналы дистилляционной
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колонны, но не их производные. Разработанный алгоритм обеспечивает слежение выхода дистилляционной колонны 
за гладким ограниченным эталонным сигналом с требуемой точностью за конечное время. Синтез алгоритма управ-
ления разделяется на ρ шагов, где ρ — оценка сверху неизвестной относительной степени модели дистилляционной 
колонны. В результате динамический порядок предлагаемого алгоритма равен ρ. Достаточные условия устойчивости 
замкнутой системы формулированы и доказаны с использованием методов устойчивости сингулярно возмущенных 
дифференциальных уравнений и функций Ляпунова. Приведены результаты моделирования, иллюстрирующие эффек-
тивность предложенного алгоритма и подтверждающие результаты аналитических расчетов.

Ключевые слова: алгоритм бэкстеппинга, несогласованные возмущения, эталонная модель, слежение, дистилля-
ционная колонна

Introduction

Distillation is the most important and widely 
used industrial separation method. Therefore, the 
availability of practical techniques to develop ef-
fective and reliable control systems for efficient and 
safe operation of distillation systems is essential. 
Distillation columns present challenging control 
problems. They have many constraints and are sub-
jected to many disturbances. Therefore, their con-
trol is not a trivial task and now there are many 
approaches to solve the problem.

In [1, 2] it is assumed the plant was described 
by linear differential equation with known coeffi-
cients, PI and PID controllers were introduced. In 
[3] the transfer function of the plant was inversed to 
determine the control law. In [4] the control system 
was synthesized by using approaches such as LGQ, 
LGQ/LTR, DNA/INA, and IMC. In [5] optimal 
fuzzy control law was proposed to operate a distil-
lation column suggested in [6], assuming that pa-
rameters of the column were known.

However, in [7] it is noted that the processes 
in the distillation column were significantly sensi-
tive to changes in external disturbances and were 
less sensitive to changes in internal processes in the 
column. Hence, even small differences from the 
nominal model parameters (the prototype) do not 
achieve the desired goal or lead to stability loss by 
using control algorithms [1—6].

In [7—9] to control a distillation column de-
scribed by linear differential equation with unknown 
coefficients the control system was built using H-
infinity optimization approach. In [10] to solve the 
same problem nero control was presented.

However, the structures of control systems
[7—10] and calculation of adjusted parameters are 
quite complicated. Therefore, there is interest in 
solving the control problem of the distillation col-
umn described by linear differential equations with 
unknown parameters and relative degree in presence 
of external disturbances. The proposed algorithm 

has to be simple in terms of technical implementa-
tion as well as calculation of adjusted parameters.

This paper proposes a robust control law using 
modified backstepping approach. The paper shows 
that only one dynamical filter is implemented in 
the control system that significantly reduces the dy-
namical degree of the control scheme, compared to 
[11]. The proposed algorithm provides required ac-
curacy and transient time. A numerical simulation 
example of the distillation column taken from [5, 6] 
shows the efficiency of the control scheme.

1. Problem formulation

Consider a plant model in the following form

 Q(p)y(t) = R(p)u(t) + f(t), (1)

where y(t) ∈ R is an output, u(t) ∈ R is an input, 
f(t) ∈ R is an unmeasured bounded disturbance 
(i.e. | f(t)| m α), Q(p) and R(p) are linear differential 
operators with unknown coefficients (deg Q(p) = n, 
deg R(p) = m), p = d/dt.

Let a reference model be described as

 Q0(p)ym(t) = kmr(t), (2)

where ym(t) ∈ R is a reference output, r(t) ∈ R is 
a piecewise continuous bounded reference input,
km > 0, Q0(p) is a linear differential operator with 
known coefficients.

The main goal is to design a control system 
such that all signals in the closed-loop system are 
bounded for any initial conditions and the following 
condition holds

 |y(t) – ym(t)| < δ for any t > T, (3)

where δ > 0 is a required accuracy, T > 0 is a 
transient time.

Assume that the coefficients of operators Q(p) 
and R(p) belong to a known compact set Ξ and 
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their degrees are unknown. The polynomial Q0(λ) is 
Hurwitz, where λ is a complex variable, deg Q0(p) = 
= ρ l n – m. Only signals y(t), u(t) and r(t) are avail-
able for measurements, but not their derivatives.

2. Synthesis of Algorithm

Represent operators Q(p) and R(p) as

 Q(p) = Qm(p) + ΔQ(p),
 R(p) = Rm(p) + ΔR(p), (4)

where Qm(p) and Rm(p) are linear differential 
operators with known coefficients such that Q0(p) = 
= Qm(p)/Rm(p), ΔQ(p) and ΔR are operators inclu-
ding parametric uncertainties.

Taking into account (4), rewrite (1) in the form

 Qm(p)y(t) + ΔQ(p)y(t) =
 = Rm(p)u(t) + ΔR(p)u(t) + f(t). (5)

Express the output variable y(t) from (5) as follows

 y(t) = 1/Q0(p)u(t) + ϕ(y(t), u(t), f(t)), (6)

where ϕ(y(t), u(t), f(t)) = 1/Qm(p)(ΔR(p)u(t) –
– ΔQ(p)y(t) + f(t)) is a function including parametric 
uncertainties and disturbance.

Introduce a filter

 0( ) ( ) ( ),v t A v t lu t= +�  (7)

where v(t) = [v1(t), v2(t), ..., vρ(t)]
т,
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 Iρ – 1 ∈ R(ρ – 1)Ѕ(ρ – 1) is 

an identity matrix, l = [0, ..., 0, 1]т, Q0(p) = pρ +
+ k0p

ρ – 1 + ... + kρ – 1.
From (7) it follows that

 Q0(p)v1(t) = u(t). (8)

Therefore, the tracking error e1(t) = y(t) – ym(t) 
equals to

 e1(t) = v1(t) + ψ(y(t), u(t), f(t), ym(t)), (9)

where ψ(y(t), u(t), f(t), ym(t)) = ϕ(y(t), u(t), f(t)) – ym(t).
Using (7), differentiate (9) w.r.t. time

 11 0 2( ) ( ) ( ) ( ),e t k v t v t f t= − + + ��  (10)

where ( ) ( ( ), ( ), ( ), ( )).mf t y t u t f t y t= ψ� �

According to backstepping method, the synthesis 
of control law consists of ρ steps. From the 1st to the 
(ρ – 1)th step auxiliary (virtual) control laws are de-
termined to stabilize corresponding subsystems. Fi-
nally, on the ρth step the control law u(t) is produced.

Step 1. Let signal v2(t) be the auxiliary control 
law in (10). Then denote v2(t) as v2(t) = U1(t). As the 
signal ψ(y(t), u(t), f(t), ym(t)) cannot be measured, 
introduce the auxiliary control law U1(t) as follows

 U1(t) = –c1μ
–1e1(t) + k0v1(t), (11)

where c1 > 0 and μ > 0 are designed parameters.
Substituting (11) into (10), we get

 1
1

1 1( ) ( ) ( ).e t с e t f t−= − μ + ��  (12)

Step 2. Since signal v2(t) is not the control law, 
introduce a new error e2(t) = v2(t) – U1(t). Taking 
into account (7), differentiate error e2(t) w.r.t. time

 2 1 1 3 1( ) ( ) ( ) ( ).e t k v t v t U t= − + − ��  (13)

Let signal v3(t) be the auxiliary control law in 
(13). Then denote v3(t) as v3(t) = U2(t) and choose 
U2(t) in the form

 2 2 2 1 1 1( ) ( ) ( ) ( ),U t c e t k v t U t= − + +
	

 (14)

where c2 > 0 is a designed parameter, 1( )U t
	

 is an 
estimate of the signal 1( )U t� .

Substitute (14) into (13)

 2 2 2 1( ) ( ) ( ),e t c e t t= − − η�  (15)

where 1 1 1( ) ( ) ( )t U t U tη = −
	�  is an estimate error.

Step i (3 m i m ρ – 1). Since signal vi(t) is not the 
control law, introduce a new error ei(t) = vi(t) – Ui – 1(t). 
Using (7), differentiate error ei(t) w.r.t. time

 1 1 1 1( ) ( ) ( ) ( ).i i i ie t k v t v t U t− + −= − + − ��  (16)

Let signal vi + 1(t) be the auxiliary control law 
in (16). Then denote vi + 1(t) as vi + 1(t) = Ui(t) and 
choose Ui(t) as follows

 1 1 1( ) ( ) ( ) ( ),i i i i iU t c e t k v t U t− −= − + +
	

 (17)

where ci > 0 is a designed parameters, 1( )iU t−

	
 is an 

estimate of the signal 1( )iU t−
� .
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Substitute (17) into (16)

 1( ) ( ) ( ),i i i ie t c e t t−= − − η�  (18)

where 1 1 1( ) ( ) ( )i i it U t U t− − −η = −
	�  is an estimate error.

Step ρ. Since signal vρ(t) is not the control law, 
introduce a new error eρ(t) = vρ (t) – Uρ – 1(t). Using 
(7), differentiate error eρ (t) w.r.t. time

 1 1 1( ) ( ) ( ) ( ).e t k v t u t U tρ ρ− ρ−= − + − ��  (19)

Consider the control law u(t) in the following form

 1 1 1( ) ( ) ( ) ( ),u t c e t k v t U tρ ρ ρ− ρ−= − + +
	

 (20)

where cρ > 0 is a designed parameter, 1( )U tρ−

	
 is an 

estimate of the signal 1( )U tρ−
� .

Substitute (20) into (19)

 1( ) ( ) ( ),e t c e t tρ ρ ρ ρ−= − − η�  (21)

where 1 1 1( ) ( ) ( )t U t U tρ− ρ− ρ−η = −
	�  is an estimate error.

According to Problem Statement, the signals 

1( ), 2,iU t i− = ρ�  are not available for measurements. 
Thus, the signals 1( )iU t−

	
 are introduced at each step. 

To implement signals 1( )iU t−

	
 use the following ob-

servers

 1 1( 1) ( ) ( ),  2, .i ip U t pU t i− −μ + = = ρ
	

 (22)

Theorem. There exist coefficients 0, 2, ,ic i> = ρ  
and μ0 > 0 such that for any μ m μ0 the control system 
consisting of filter (7), auxiliary control laws (11), 
(17), control law (20) and observers (22) ensures goal 
(3) and all signals are bounded.

Proof of Theorem. Taking into account (22), re-
write equations for the estimate errors  ηi – 1(t) =

= 1 1( ) ( ),i iU t U t− −−
	�  2,i = ρ  as follows

 1
1 1 1( ) ( ) ( ), 2, .i i it t U t i−

− − −η = −μ η + = ρ���  (23)

Rewrite (12), (13), (18), (21) and (23) as the fol-
lowing system
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1

1 1 1 2 1
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( ) ( ) ( ),
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e t c e t f t
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t t U t i

v t A v t lu t

−

− − −

μ = − + μ
= − − η

μ η = −η + μ = ρ

= +
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�
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�

 (24)

where μ1 = μ2 = μ. To analyze system (24) the 
following Lemma is needed.

Lemma [12—15]. Let the system be described by 
the following differential equation

 1 2( , , , ),x f x t= μ μ�  (25)

where x(t) ∈ RS1, μ = col(μ1, μ2) ∈ RS2, f(x, μ1, μ2, t) 
is Lipchitz continuous function in x. Let (25) has a 
bounded closed attraction set Ω = {x | P(x) m C} for
μ2 = 0, where P(x) is a piecewise-smooth, positive 
definite function in RS1. In addition let there exist some 
numbers C1 > 0 and 1 0μ >  such that the following 
condition holds

 
1 1

T

1 1
( )

sup , ( , ,0, ) ( ) .
P x

f x t P x C C
xμ μ

⎡ ⎤∂⎡ ⎤⎢ ⎥μ = −⎢ ⎥∂⎢ ⎥⎣ ⎦⎣ ⎦m
m

Then there exists μ0 > 0 such that the system (25) 
has the same attraction set Ω for μ2 m μ0.

Let us check conditions of Lemma. Consider 
(24) for μ2 = 0. Let P(x) = V(t), where V(t) is Lya-
punov function chosen in the following form

 2 2 2
1 1

2
( ) 0,5 ( ) 0,5 [ ( ) ( )].i i

i
V t e t e t t

ρ

−
=

= + + η∑  (26)

Taking the derivative w.r.t. time of V(t) along the 
trajectories (24), we get

 1 2 2 1 2
1 1 1 1 1 1

2
[ ].i i i i i

i
V c e c e e

ρ
− −

− −
=

= − μ + − − η − μ η∑�  (27)

Find upper bounds for the third term of (27)

 1 2 2
1 0 0 ,  2, .i i i ie e i−

−− η μ + μ η = ρm  (28)

Substituting (28) into (27), we get

 �1 2 2 2
1 1 1 1

2
( ) ( ) [ ( ) ( )],i i i

i
V t c e t c e t d t

ρ
−

−
=

− μ − + η∑� m  (29)

where 1
0 ,i ic c −= − μ  � 1

1 0.d −= μ − μ  Obviously, there 
exist coefficients ci, 2, ,i = ρ  μ1, and μ0 such that 

0,ic >  2, ,i = ρ  � 0d >  and system (24) is 
asymptotically stable.

Taking into account the first equation in (7), 
(11) and v2(t) = U1(t), express U1(t) by e1(t) in the 
following form

 1 0
1 1( ) ( ).

c p k
U t e t

p
+

= −
μ

Since e1(t) is asymptotically stable, then U1(t) 
also is asymptotically stable. Hence, it follows from 
(11) and e2(t) = v2(t) – U1(t) that v1(t) and v2(t) are 
asymptotically stable respectively. Asymptotically 
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stability of signal 
1( )U t  follows from (22). There-
fore, expression (14) leads to asymptotically stability 
of signal U2(t). Similarly, it can be shown that sig-
nals vi(t), Ui-1(t), 1( ), 3, ,iU t i− = ρ

	
 u(t) are asymptoti-

cally stable. It follows from (23) that signals 

1( ),  2,iU t i− = ρ��  are asymptotically stable. Since 
e1(t) is exponentially stable, then signals pie1(t), i =
= 1,..., ρ are bounded that leads to boundedness of 
signals piy(t), i = 1, ..., ρ. Boundedness of signals 

ϕ(y(t), u(t), f(t)), ψ(y(t), u(t), f(t), ym(t)) and ( )f t�  
follows from (6), (9) and (10) respectively. There-
fore, all signals in the closed-loop system are 
bounded. According to Lemma there exist μ0 > 0 
such that for μ1 m μ0 and μ2 m μ0 the attraction set 
is the same as for μ2 = 0. However, system (24) is 
not asymptotically stable for μ2 ≠ 0. It has some at-
traction set. Let us find the attraction set of system 
(24) for μ2 ≠ 0. Taking into account result (29), take 
derivative w.r.t. time of (26) along the trajectories 
(24) for μ1 = μ2 = μ0

 

1 2
1 0 1 1

2 2
1 1 1

2
[ ],i i i i i

i

V c e e f

c e d U

−

ρ

− − −
=

− μ + −

− + η − η∑

� �

��

m
 (30)

where 1
0 0.d −= μ − μ

Use the following upper bounds

 
1 2 2

1 1 0 1 0 1

1 2 2
1 0 1 0

0,5 2 ;

.

i i i iU U

e f e f

−
− − − −

−

η μ η + μ

μ + μ

�� ��

� �
m

m
 (31)

Taking into account (31), rewrite (30) in the form

 2 2 2
1 1 0

2
( ) ( ) [ ( ) ( )] ,i i i

i
V t ce t c e t d t

ρ

−
=

− − + η + μ ϕ∑� � �m  (32)

where 1
0 1( 1),c c−= μ −  1

00,5 ,d d −= − μ�  

2 2
1

2
sup ( ) 2 ( ) .i

t i
f t U t

ρ

−
=

⎛ ⎞
ϕ = +⎜ ⎟

⎝ ⎠
∑� ���

Obviously, 0d >�  for 0 (0; 0,5).μ ∈  According 
to (26), rewrite (32) as

 0( ) ( ) ,V t V t− α + μ ϕ� �m  (33)

where 12min{ , , ..., , }.c c c dρα = �

Solving inequality (33) w.r.t. V(t), we get

 1
0( ) (0) (1 ) .t tV t e V e−α −α −+ − μ ϕα�m  (34)

Taking into account (26), find the upper bound 
for |e1(t)| as

 1
1 0( ) 2( (0) (1 ) ).t te t e V e−α −α −+ − μ ϕα�m  (35)

Let t = T in (35). If the right hand side of (35) is 
equal to δ, then we can rewrite the estimates of the 
value δ in the form

 1
02( (0) (1 ) ).T Te V e−α −α −δ = + − μ ϕα�  (36)

It follows from (36) that δ explicitly depends
on μ0. The theorem is proved.

Remark. The proposed algorithms can be trivial 
extended to control of network systems with nonli-
near agents and with nonlinear links in the presence 
of mismatched disturbances. This is due to the fact 
that all disturbances and nonlinearities are concen-
trated in new disturbance function that further is 
compensated.

3. Example. Control of distillation column

Consider a seven plate binary (Benzene—Toluene) 
distillation column (Fig. 1). Linearized around an 

Fig. 1. The binary distillation column
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operating state the dynamical model of the distil-
lation column is represented in state-space form as

 
( ) ( ) ( ) ( );

( ) ( ),

x t Ax t Bu t Ff t

y t Cx t

= + +⎧
⎨ =⎩

�
 (37)

where x = (xd, x7, ..., x1, xb, Pc, Vs)
т, xd is the mole 

fraction of the light component in the distillate 
(p.u.), x7, ..., x1 are the mole fractions of the light 
component at each stage of the column (p.u.), xb 
is the mole fraction of the light component in the 
bottom product (p.u.), Pc is the steam pressure in 
the reboiler (kPa), Vs is the boilup (kmol/s); u = Lr 
is the reflux (kmol/s); f = (q, F, z f, Pss, Xv)

т, q is the 
ratio of the increase in molar reflux rate across the 
feed stage to the molar feed rate (q = 1 for bubble-
point liquid), F is the total feed rate (kmol/s), z f is 
the mole fraction of the light component in the feed 
(p.u.), Pss is the input steam pressure (kPa), Xv is the 
valve capacity coefficient (p.u.); y = x7.

Consider the reference model in the following form

 
( ) ( ) ( );

( ) ( ),
m m m m m

m m

x t A x t B u t

y t Cx t

= +⎧
⎨ =⎩

�
 (38)

where xm(t) ∈ R11 is the reference state, ym(t) ∈ R 
is the reference output, um (t) ∈ R is the reference 
input. All signals and parameters in (38) have the 
same physical meaning as the corresponding signals 
and parameters in (37). Matrices Am, Bm and C are 
given in [5, 6]. Note that the relative degree of (38) 
equals to one.

Let matrices A and B in (37) can be represented 
as follows

 A = Am + Bmaт, B = Bm + Bmbт, (39)

where a ∈ R11 is the vector of parametric uncertain-
ties of matrix A in (37), b ∈ R11 is the vector of 
parametric uncertainties of matrix B in (37).

Assume that the upper bound of the relative 
degree of (37) equals to 2. According to proposed 
method, the control system consists of
 � filter

 1 0 1

2 1 2

( ) 1 ( ) 0
( );

( ) 0 ( ) 1

v t k v t
u t

v t k v t

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

�
�  (40)

 � auxiliary control law

 U1(t) = –c1μ
–1e1(t) + k0v1(t), (41)

where e1(t) = y(t) – ym(t);

 � observer

 1 1( 1) ( ) ( ),p U t pU tμ + =
	

 (42)

 � control law

 

12 2 1 1( ) ( ) ( ) ( ),u t c e t k v t U t= − + +  (43)

where e2(t) = v2(t) — U1(t).
There are two cases to consider.
Case 1. Let the parametric uncertainties a and b

in (39) equal to (1, ..., 1)т and (0, –1, 0, ..., 0)т 
respectively. Therefore, the relative degree of (37) 
equals to 2.

Let vector of external disturbances f(t) = [ f1(t), 
..., f5(t)]

т can be represented as

 f(t) = ϑsin(2πt/τ) + w(t), (44)

where vector of amplitudes ϑ = 0,01[1, 0.01, 0.3, 
5, 0.7]т equals to 1 % of corresponding operating 
values, τ = 1 (h) is the time constant of the distillation 
column, w(t) = [w1(t), ..., w5(t)]

т is a vector of band-
limited white noise with power spectral density 
matrix Sw (ω) = ϑϑт.

Dynamics of the valve actuator ua (t) is described as

 ( 1) ( ) ( ),ap u t u tσ + =  (45)

where σ = 3 (min) is the time constant of the valve 
actuator.

The reference input um (t) is chosen using the op-
timal control theory. The initial conditions are zero.

Choose parameters in (40)—(43) as follows

 μ = 0.01, c1 = 15000, c2 = 15,
 k0 = 0.02, k0 = 0.0001. (46)

The simulation results are represented in Fig. 2, 3 
(see the second side of the cover) with solid black 
curves.

Case 2. Let the parametric uncertainties a and b 
in (39) equal to (1, ..., 1)т and (0, ..., 0)т respectively. 
Therefore, the relative degree of (37) equals to 1. 
External disturbances f(t) are the same.

The simulation results are represented in Fig. 2, 3 
with dashed blue curves. The simulation results 
show that the proposed control system (40)—(43) 
with parameters (46) ensures the goal (3) in spite of 
parametric and structural uncertainties of the plant 
(37) in presence of external disturbances.



96 Мехатроника, автоматизация, управление, Том 20, № 2, 2019

4. Conclusions

This paper has proposed the robust control law 
for a distillation column using modified backstep-
ping approach. The algorithm provides tracking of 
the plant output to smooth reference signal with the 
required accuracy after transient time. In compari-
son with existing results, the control system imple-
mentation requires only one filter which dimension 
is equal to the relative degree of the plant. These 
facts allow us to simplify the control scheme and 
calculation of adjusted parameters.

The proposed scheme is robust to structural 
uncertainties of the plant in contrast to previous-
ly known control systems using backstepping ap-
proach. Hence, suggested control law makes it pos-
sible to synthesize the single system to control the 
plant with unknown relative degree, for example, a 
distillation column.

The simulation results show that synthesized 
control system ensures required accuracy in both 
cases of structural uncertainties in agreement with 
theoretical basis. Both transients of the control sig-
nal look almost identical.

The value of tracking error can be reduced by 
varying of adjusted parameters and reducing pa-
rameter μ. It should be mentioned that in the case 
with the differences the plant initial conditions and 
the reference model, the reduction of parameter μ 
leads to control splash at the beginning of the con-
trol system operation.
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