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Abstract

A novel robust algorithm is proposed for control of plants under parametric and structural uncertainties, as well as, external
bounded disturbances. The algorithm design is based on the modified backstepping approach that allows to compensate mismatched
disturbances under presence of nonlinearities. The obtained results are extended to control of network systems with nonlinear agents
and with nonlinear links in the presence of mismatched disturbances. Effectiveness of the proposed algorithm is demonstrated on
control of a distillation column which is described by parametric and structurally uncertain differential equation in presence of external
bounded disturbances. It is assumed that only scalar input and output of the distillation column are available for measurement, but
not their derivatives. The developed algorithm provides output tracking of a smooth bounded reference signal with a required accuracy
at a finite time. The synthesis of control algorithm is separated into p steps, where p is an upper bound of the relative degree of the
distillation column model. Therefore, the dynamical order of the proposed algorithm is equal to p. The sufficient conditions of the
closed-loop stability is formulated and proved by using methods of stability of singular perturbed differential equations and Lyapunov
functions. The simulations illustrate effectiveness of the proposed algorithm and confirm analytical results.

Keywords: backstepping algorithm, mismatched disturbance, reference model, tracking, distillation column

For citation:

Furtat 1. B., Nekhoroshikh A. N. Modified Backstepping Algorithm and its Application to Control of Distillation Column, Mekha-
tronika, Avtomatizatsiya, Upravlenie, 2019, vol. 20, no. 2, pp. 90—96.

YK 681.511.46

WU. B. ®ypTaT, O-p TEXH. HayK, BeA. Hay4. COTp., cainenash@mail.ru,
A. H. Hexopowwux, acnupaHT, becks94@mail.ru,
UHcTuTyT Nnpobnem mawmHoseaeHna PAH (UMNMaw PAH), Yaunsepcutetr UTMO, CankT-lNeTtepbypr, Poccus

MoaudnumpoBaHHbIM anropuTM G3KCTENMNUHra

n ero npyumeHeHune Ansd ynpasneHus AUCTUNNALNOHHON KO.I1OHHOI:;I1

Pazpaboman noeviii pobacmmubiii areopumm ynpagieHus OUHAMUHECKUMU 006eKMmamu 6 yCA08UAX NAPAMEempUu4ecKoi u
CMPYKMYPHOU HeonpedeieHHOCMAX, a makKdice 0elcmeus 6HeWHUX 02PAHUYEHHbIX 803MYuweHull. Jas cunmesa arcopumma
ucnoab3yemcs mMooupUUUPOGAHHbIL Memo0 0IKCMennuHaa, No360AAI0WUL KOMAEHCUPOBAMb HECO2AACOBAHHbIE 803MYULCHUS
6 HeauHelinbix cucmemax. Ilonyuennoie pe3yabmamol pacuiupervl Ha cAy4ail YAPAGAeHUs CemesblMU CUCMeMaMU ¢ HeluHeli-
HbLMU A2eHMAMU U HEeAUHEUHbIMU CEA3AMU NPU HAAUYUU HECO2AACOBAHHbIX G03MYUeHUll. Dpgexmusnocms pabomsr npeo-
A0NCEHHO20 AN20PUMMA NPOOEMOHCMPUPOBAHA HA YNPAGACHUU OUCMUAAAUUOHHOU KOAOHHOU, KOMOPAs ONUCbIBACMCA NAPa-
Mempu4ecKu U CMpyKmypHo HeonpeoeseHHblM OUuppepeHyuaroHbim YpaeHeHuem ¢ GHeWHUMU 02PAHUYEHHbIMU 603MYULCHUS-
mu. Ilpeonosaeaemces, umo 043 usmeperus 00CMYNHvl MOAbKO CKAAAPHbBIE 8X00HbIE U 8bIXOOHbBIE CUSHAAb OUCMUAAAYUOHHOLL
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UUOHHAA KONOHHA

KOAOHHbL, HO He UX npou3eoonvle. Pazpabomannslii areopumm obecnevugaem caelcerue 8vix00a OUCMUANAYUOHHOU KOAOHHbI
3a 2NA0KUM 02PAHUYEHHbIM IMAAOHHbIM CUSHAAOM ¢ mpefyemol mouHOCmblo 3a KoHeuHoe epemsa. Cunmes aseopumma ynpae-
AeHUsl pazdensiemcs Ha p waeos, 20e p — OUEeHKA C8epxy Heu38eCmHOlU OMHOCUMENbHOU cmeneHu Modeau OUCMUAASUUOHHOU
K0A10HHbI. B pesysbmame dunamuueckuii nopsdok npediazaemozo areopumma paset p. Jlocmamoutsie ycao8us ycmouuueocmu
3AMKHYMOU cucmembl QOpMYAUPOBaHsl U 00KA3AHbL C UCHOAb30BAHUEM MEMO0008 YCMOUMUBOCMU CUHEYAADHO 603MYUeHHbIX
ougghepenyuanvnoix ypasnenutl u ¢yuxyuli JIanynoea. Ilpueedensvl pe3ysomamol MOOeAUPOBAHUS, UAAOCMPUPYOUUE FPPek-
MUBHOCMb NPEOAONCEHHO20 AAOPUMMA U HOOMEePHCOaoUuUe Pe3yIbmamsl AHAAUMUYECKUX PActemos.

Karoueevte caosa: aireopumm 63}ccmenmmea, Heco21aco6dHHble 603MYUWEeHUA, SMANOHHAA Moaé'/lb, caesxncedue, oucmuans-

Introduction

Distillation is the most important and widely
used industrial separation method. Therefore, the
availability of practical techniques to develop ef-
fective and reliable control systems for efficient and
safe operation of distillation systems is essential.
Distillation columns present challenging control
problems. They have many constraints and are sub-
jected to many disturbances. Therefore, their con-
trol is not a trivial task and now there are many
approaches to solve the problem.

In [1, 2] it is assumed the plant was described
by linear differential equation with known coeffi-
cients, PI and PID controllers were introduced. In
[3] the transfer function of the plant was inversed to
determine the control law. In [4] the control system
was synthesized by using approaches such as LGQ,
LGQ/LTR, DNA/INA, and IMC. In [5] optimal
fuzzy control law was proposed to operate a distil-
lation column suggested in [6], assuming that pa-
rameters of the column were known.

However, in [7] it is noted that the processes
in the distillation column were significantly sensi-
tive to changes in external disturbances and were
less sensitive to changes in internal processes in the
column. Hence, even small differences from the
nominal model parameters (the prototype) do not
achieve the desired goal or lead to stability loss by
using control algorithms [1—6].

In [7—9] to control a distillation column de-
scribed by linear differential equation with unknown
coefficients the control system was built using H-
infinity optimization approach. In [10] to solve the
same problem nero control was presented.

However, the structures of control systems
[7—10] and calculation of adjusted parameters are
quite complicated. Therefore, there is interest in
solving the control problem of the distillation col-
umn described by linear differential equations with
unknown parameters and relative degree in presence
of external disturbances. The proposed algorithm

has to be simple in terms of technical implementa-
tion as well as calculation of adjusted parameters.

This paper proposes a robust control law using
modified backstepping approach. The paper shows
that only one dynamical filter is implemented in
the control system that significantly reduces the dy-
namical degree of the control scheme, compared to
[11]. The proposed algorithm provides required ac-
curacy and transient time. A numerical simulation
example of the distillation column taken from [5, 6]
shows the efficiency of the control scheme.

1. Problem formulation

Consider a plant model in the following form

Q(py(®) = R(p)u@® + f(0), (1

where y(f) € R is an output, u(f) € R is an input,
flH) € R is an unmeasured bounded disturbance
(i.e. [f(t)) < o), O(p) and R(p) are linear differential
operators with unknown coefficients (deg Q(p) = n,
deg R(p) = m), p = d/dt.

Let a reference model be described as

Qo(P)ym(t) = kyr(0), 2

where y,,(f) € R is a reference output, 7(f) € R is
a piecewise continuous bounded reference input,
k, > 0, Qy(p) is a linear differential operator with
known coefficients.

The main goal is to design a control system
such that all signals in the closed-loop system are
bounded for any initial conditions and the following

condition holds

V(®) = y, (0] < & for any > T, 3)
where & > 0 is a required accuracy, 7> 0 is a
transient time.

Assume that the coefficients of operators Q(p)
and R(p) belong to a known compact set = and
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their degrees are unknown. The polynomial Q,(}) is
Hurwitz, where A is a complex variable, deg Q,(p) =
= p =2 n— m. Only signals y(#), u(¥) and r(¢) are avail-
able for measurements, but not their derivatives.

2. Synthesis of Algorithm

Represent operators Q(p) and R(p) as

Q(p) = Q,(p) + AQ(p),
R(p) = R,(p) + AR(p), “

where Q,(p) and R,(p) are linear differential
operators with known coefficients such that Qy(p) =
= 0,(»/R,(p), AO(p) and AR are operators inclu-
ding parametric uncertainties.

Taking into account (4), rewrite (1) in the form

0,,(py(0) + AQ(p)y(t) =
= R, (pu(t) + AR(p)u(t) + f2). ®))

Express the output variable y(f) from (5) as follows
(@ = 1/0¢(p)u® + o(y®), u(@), fi7)),  (6)

where o(y(®), u@®, (1) = 1/0,(p)(AR(p)u(®) —
— AQ(p)y(?) + f(?)) is a function including parametric
uncertainties and disturbance.

Introduce a filter

v(t) = Ayv() + lu(?), (7)
where v(#) = [v|(®), v,(®), ..., v,(OI",
—k,
A, = _{cl L. N A R = DX — 1) g
—k. 0 - 0

p-1
an identity matrix, / = [0, ..., 0, 1]%, Qy(p) = p© +
+kop? T+ Ltk

From (7) it follows that

Qo(p)v() = u@). ®)

Therefore, the tracking error e,() = y(¥) — »,,(9)
equals to

el = v + v, u@®, [0, y,0), )

where y(y(®), u(®), A1), y,,(1)) = o(¥(@), u(@), 1)) = ,(2).
Using (7), differentiate (9) w.r.z. time

é,(t) = —kov (1) + v, () + F (1), (10)

where f(t) = y(y(t), u(t), £(1), ¥,,()).

According to backstepping method, the synthesis
of control law consists of p steps. From the 1sz to the
(p — 1)th step auxiliary (virtual) control laws are de-
termined to stabilize corresponding subsystems. Fi-
nally, on the pth step the control law u(?) is produced.

Step 1. Let signal v,(f) be the auxiliary control
law in (10). Then denote v,(¢) as v,(f) = U,(?). As the
signal y(¥(9), u(), f(t), y,,(f)) cannot be measured,
introduce the auxiliary control law U () as follows

Ui) = = ey(d) + kow(0), (1)
where ¢; > 0 and p > 0 are designed parameters.

Substituting (11) into (10), we get

60 = —eyule () + F(0). (12)
Step 2. Since signal v,(7) is not the control law,

introduce a new error e,(f) = v,(f) — U,(#). Taking
into account (7), differentiate error e,(f) w.r.t. time

&x() =~k (1) + v3(1) = Uy (0). (13)

Let signal v;(#) be the auxiliary control law in
(13). Then denote v;(r) as v5(f) = U,(f) and choose
U,(9) in the form

U, (1) = —cye)(t) + kv (£) + ljl (), (14)
where ¢, > 0 is a designed parameter, U (1) is an

estimate of the signal U ().
Substitute (14) into (13)

é(1) = —cre5(t) =y (1), (15)

where n,(7) = U (1) - U () is an estimate error.
Step i 3 < i< p — 1). Since signal v(?) is not the
control law, introduce a new error ef?) = vi(f) — U, _ ,(9).
Using (7), differentiate error e/(f) w.r.z. time
é,(1) =~k (1) + v (1) = U, (0). (16)
Let signal v; ; () be the auxiliary control law
in (16). Then denote v; , ,(f) as v; ; () = U(?) and
choose Ug(?) as follows

U(t) =—cie;(t) + ki) + U, (1), (17)

where ¢; > 0 is a designed parameters, U i1(r) is an
estimate of the signal U;_ (7).
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Substitute (17) into (16)
é;(1) = —c;ie;(t) —m,_1 (1), (18)

where n,;_;(7) = U () - U ;_1(#) is an estimate error.
Step p. Since signal v,(?) is not the control law,

introduce a new error ¢ (t) =v, (® — U,_ (. Using
(7), differentiate error e, (#) w. rt tlme
é,(t) =k, () +u®)-U, (). (19)

Consider the control law u(?) in the following form

u(t) = —c e, (1) + k,_ v, (f) + ljp_l(t), (20)
where ¢, > 0 is a designed parameter, U p-1(7) is an
estimate of the signal U p-1(1) -

Substitute (20) into (19)

é,(t) = —c,e (1) —m, (1),

21
where n,_,(7) = U oo1(f) = U o-1(7) is an estimate error.

According to Problem Statement, the signals
U i1(®), i =2,p are not available for measurements.
Thus, the signals U ;_1(#) are introduced at each step.
To implement signals U ;i_1(#) use the following ob-
servers

(wp+ DU (1) =pU, (1), i=2p.  (22)

Theorem. There exist coefficients c¢; >0, i = 2,p,
and p > 0 such that for any n <  the control system
consisting of filter (7), auxiliary control laws (11),
(17), control law (20) and observers (22) ensures goal
(3) and all signals are bounded.

Proof of Theorem. Taking into account (22), re-
Write equations for the estimate errors m; _ ((f) =

U, (t)-U, ((t), i=2,p as follows

M@ = O +U, @), i=2,p.  (23)

Rewrite (12), (13), (18), (21) and (23) as the fol-
lowing system

i€y (1) = —cie, (1) + Hzf(f);
€;(t) = —c;e;(t) —m;_1(?);
i (1) = () + U, (1), =2, p;
v(t) = Agv(t) + lu(t),

where pu; = w, = p. To analyze system (24) the
following Lemma is needed.

24)

Lemma [12—15]. Let the system be described by
the following differential equation
x:f(x, ula MZ’ t)a (25)
where X(t) € RS]a n= COl(“la “2) € R827 f(x, His W2, t)
is Lipchitz continuous function in x. Let (25) has a
bounded closed attraction set Q = {x | P(x) < C} for
w = 0, where P(x) is a piecewise-smooth, positive
definite function in RS'. In addition let there exist some

numbers C, > 0 and @, >0 such that the following
condition holds

T
sup Map (x)} L f G .0, r)>
| <y ox

Then there exists p, > 0 such that the system (25)
has the same attraction set Q) for p, < .

Let us check conditions of Lemma. Consider
(24) for p, = 0. Let P(x) = WV(#), where W) is Lya-
punov function chosen in the following form

P(x) = c] <-C,.

V(1) =0,5(1) + 0,53 [e2(0) +n? (0] (26)
i=2
Taking the derivative w.r.z. time of V(f) along the
trajectories (24), we get
. P
Vi=eprlel + Xlcel —ui'misl Q7)

—eéM;_1

Find upper bounds for the third term of (27)

12 ) .
—em;_; SHg e +ugn;, i =2,p. (28)

Substituting (28) into (27), we get

V()< —cqpy'ef (1) - 22[532(;)+an 1M1 (29)

where ¢; =¢; —png', d=p;' —p,. Obviously, there
exist coefficients ¢;, i = 2, p, Ky, and pg such that
¢, >0, i=2p, d>0
asymptotically stable.

Taking into account the first equation in (7),
(11) and v,(r) = U,(¥), express U (f) by e (?) in the
following form

and system (24) is

Ul(t):_ﬂLkO

e (7).

Since e(r) is asymptotically stable, then U,(?)
also is asymptotically stable. Hence, it follows from
(11) and e,(¥) = v,(f) — Uy(¥) that v () and v,(r) are
asymptotically stable respectively. Asymptotically
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stability of signal U 1(¢) follows from (22). There-
fore, expression (14) leads to asymptotically stability
of signal U,(#). Similarly, it can be shown that sig-
nals vi(?), U_(), U;_(?),i = 3,p, u(f) are asymptoti-
cally stable. It follows from (23) that signals
U i1, i:fp are asymptotically stable. Since
e,(?) is exponentially stable, then signals piel(t), i=
= 1,..., p are bounded that leads to boundedness of
signals p'y(), i = 1, ..., p. Boundedness of signals

oY@, u@®), A1), v(y@®), u@®, f1), y,(1)) and f(7)
follows from (6), (9) and (10) respectively. There-
fore, all signals in the closed-loop system are
bounded. According to Lemma there exist p, > 0
such that for p; < py and p, < pg the attraction set
is the same as for p, = 0. However, system (24) is
not asymptotically stable for p, # 0. It has some at-
traction set. Let us find the attraction set of system
(24) for p, # 0. Taking into account result (29), take
derivative w.r.t. time of (26) along the trajectories

(24) for py = = py

V< —emglel +ef -

P _ .. (30)
—Zz[cieiz +dn;y -n Ui,
i=
where d = pg' -y,
Use the following upper bounds
n; lU 1 < 0,5“(_)11']2 1 +2M0U21,
1— 11— 1— 1— (31)

ef <up'ef +uof.
Taking into account (31), rewrite (30) in the form

Wn<4ﬁm—iméM+hLMHmm<n>

where ¢ =np'(c - 1), d=d-0,5u5",

~ p..
b= sup[fz(t) +23 U,-zl(t)j.
t i=2

Obviously, d>0 for Ko € (0;4/0,5). According
to (26), rewrite (32) as

V() <-aV(t)+ped, (33)
where o =2min{c, ¢, ..., C,, d).
Solving inequality (33) w.r.t. V(¢), we get
V() <e ™V 0)+(1-e *pypo ' (34)

Taking into account (26), find the upper bound
for |e,(7)] as

le ()] < J2(e WV (0) + (1 —e *pgpa). (35)

Let = Tin (35). If the right hand side of (35) is
equal to 5, then we can rewrite the estimates of the
value § in the form

5=2e TV (©0)+(1-e“Tuepa™).  (36)

It follows from (36) that § explicitly depends
on p,. The theorem is proved.

Remark. The proposed algorithms can be trivial
extended to control of network systems with nonli-
near agents and with nonlinear links in the presence
of mismatched disturbances. This is due to the fact
that all disturbances and nonlinearities are concen-
trated in new disturbance function that further is
compensated.

3. Example. Control of distillation column

Consider a seven plate binary (Benzene—Toluene)
distillation column (Fig. 1). Linearized around an

N x
X 7 T d
s -
y L, D

F Efpf Vr ¥

A Ls

V.

s Y Vs

1 Xy

Fig. 1. The binary distillation column
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operating state the dynamical model of the distil-
lation column is represented in state-space form as

{x(r) = Ax(t) + Bu(t) + Ff (1); G

y(1) = Cx(?),

where x = (x;, X7, ..., X|, X, P., V)", x, is the mole
fraction of the light component in the distillate
(p.u.), x4, ..., x; are the mole fractions of the light
component at each stage of the column (p.u.), x,
is the mole fraction of the light component in the
bottom product (p.u.), P. is the steam pressure in
the reboiler (kPa), V; is the boilup (kmol/s); u = L,
is the reflux (kmol/s); f= (¢, F, z P, X)), q is the
ratio of the increase in molar reflux rate across the
feed stage to the molar feed rate (¢ = 1 for bubble-
point liquid), F is the total feed rate (kmol/s), z,is
the mole fraction of the light component in the feed
(p.u.), P is the input steam pressure (kPa), X, is the
valve capacity coefficient (p.u.); y = x;.

Consider the reference model in the following form

Y1) = Ct, (1), 9
where x,(7) € R is the reference state, YD € R
is the reference output, u,, (f) € R is the reference
input. All signals and parameters in (38) have the
same physical meaning as the corresponding signals
and parameters in (37). Matrices 4,,, B,, and C are
given in [5, 6]. Note that the relative degree of (38)
equals to one.

Let matrices A and B in (37) can be represented
as follows

{xm(t) = Ay X (1) + Byt (1)

A=A, + B,a", B= B, + B,b", 39
where a € R!! is the vector of parametric uncertain-
ties of matrix A in (37), b < R is the vector of
parametric uncertainties of matrix B in (37).
Assume that the upper bound of the relative
degree of (37) equals to 2. According to proposed
method, the control system consists of
o filter

(@) (ko 1iw@®] [0 ,
M S I N
e auxiliary control law
Ui(t) = —eqp”"ey(t) + kovy(0), (41)

where e () = y(t) — y,,(0);

e observer
(up + DU, (1) = pU,(2), (42)
e control law
u(t) = —c5(1) + kyvy (1) + U1(2), 43)

where e, (f) = v,(f) — U,(?).

There are two cases to consider.

Case 1. Let the parametric uncertainties @ and b
in (39) equal to (1, .., D" and (0, —1, O, ..., 0)"
respectively. Therefore, the relative degree of (37)
equals to 2.

Let vector of external disturbances f(¥) = [f,(¥),
..., f5s(t)]" can be represented as

St) = 9sin(2nt/t) + w(?), 44)

where vector of amplitudes 8 = 0,01[1, 0.01, 0.3,
5, 0.7]" equals to 1 % of corresponding operating
values, T =1 (h) is the time constant of the distillation
column, w(?) = [w;(?), ..., ws()]" is a vector of band-
limited white noise with power spectral density
matrix S, (0) = 99"

Dynamics of the valve actuator u,, (7) is described as

(op + Du, (1) = u(?), (45)
where ¢ = 3 (min) is the time constant of the valve
actuator.
The reference input u,, (¢) is chosen using the op-
timal control theory. The initial conditions are zero.
Choose parameters in (40)—(43) as follows

pu = 0.01, ¢, = 15000, ¢, = 15,
ky = 0.02, k, = 0.0001. (46)
The simulation results are represented in Fig. 2, 3

(see the second side of the cover) with solid black

curves.

Case 2. Let the parametric uncertainties a and b
in (39) equal to (1, ..., )" and (0, ..., 0)" respectively.
Therefore, the relative degree of (37) equals to 1.
External disturbances f{¥) are the same.

The simulation results are represented in Fig. 2, 3
with dashed blue curves. The simulation results
show that the proposed control system (40)—(43)
with parameters (46) ensures the goal (3) in spite of
parametric and structural uncertainties of the plant
(37) in presence of external disturbances.
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4. Conclusions

This paper has proposed the robust control law
for a distillation column using modified backstep-
ping approach. The algorithm provides tracking of
the plant output to smooth reference signal with the
required accuracy after transient time. In compari-
son with existing results, the control system imple-
mentation requires only one filter which dimension
is equal to the relative degree of the plant. These
facts allow us to simplify the control scheme and
calculation of adjusted parameters.

The proposed scheme is robust to structural
uncertainties of the plant in contrast to previous-
ly known control systems using backstepping ap-
proach. Hence, suggested control law makes it pos-
sible to synthesize the single system to control the
plant with unknown relative degree, for example, a
distillation column.

The simulation results show that synthesized
control system ensures required accuracy in both
cases of structural uncertainties in agreement with
theoretical basis. Both transients of the control sig-
nal look almost identical.

The value of tracking error can be reduced by
varying of adjusted parameters and reducing pa-
rameter p. It should be mentioned that in the case
with the differences the plant initial conditions and
the reference model, the reduction of parameter p
leads to control splash at the beginning of the con-
trol system operation.
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