
714 Мехатроника, автоматизация, управление, Том 19, № 11, 2018

Abstract

This paper focuses on the real-time kinematics solution of an aerial manipulator mounted on an aerial vehicle, the vehicle’s motion
isn’t considered in this study. Robot kinematics using Denavit-Hartenberg model was presented. The fundamental scope of this paper
is to obtain a global online solution of design configurations with a weighted specific objective function and imposed constraints are
fulfilled. Acknowledging the forward kinematics equations of the manipulator; the trajectory planning issue is consequently assigned
to on an optimization issue. Several types of computing methods are documented in the literature and are well-known for solving
complicated nonlinear functions. Accordingly, this study suggests two kinds of artificial intelligent techniques which are regarded
as search methods; they are differential evolution (DE) method and modified shuffled frog-leaping algorithm (MSFLA). These
algorithms are constrained metaheuristic and population-based approaches. moreover, they are able to solve the inverse kinematics
problem taking into account the mobile platform additionally avoiding singularities since it doesn’t demand the inversion of a Jacobian
matrix. Simulation results are carried out for trajectory planning of 6 degree-of-freedom (DOF) kinematically aerial manipulator and
confirmed the feasibility and effectiveness of the supposed methods.

Keywords: Inverse Kinematics, Degree-of-Freedom (DOF), Human-like Aerial Manipulator, Optimization Algorithms,
metaheuristic and Revolutionary Methods, differential evolution (DE), Shuffled Frog Leaping Algorithm

УДК 621.865:004.896 DOI: 10.17587/mau.19.714-724

I. N. Ibrahim, Ph. D. Student, ibrncfe@gmail.com, http://orcid.org/0000-0001-9544-3020,
Department of Mechatronics and Robotics, Kalashnikov Izhevsk State Technical University,

Izhevsk, 426069, Russian Federation

A Comparative Study for an Inverse Kinematics Solution
of an Aerial Manipulator Based on the Differential Evolution Method

and the Modifi ed Shuffl ed Frog-Leaping Algorithm
Accepted on July 16, 2018

1. Introduction

The inverse kinematics (IK) solver is a prima-
ry problem in robotic manipulation, particularly
when demand real-time and precision in calcula-
tions. Mathematically, the numerical solution of ki-
nematics is intricate because of the high degree of
nonlinearity, furthermore, the Linear and dynamic
programming techniques usually fail or reach lo-
cal optimum in solving NP-hard problems with a
large number of variables and non-linear objective
functions, moreover, Traditionally Jacobian-based so-
lutions are identified to scale inadequately with the
high number of degrees of freedom (DOF) [1] in ad-
dition to singularities existence. In contrast, [2] pre-
sented a comparative study of several methods based
on the Jacobian matrix, clarifying that the modi-
fied Levenberg—Marquardt method is much better
for a quite large set of random configurations than
others but may lose convergence compared to Jaco-
bian transpose and Pseudocode inverse methods. Re-
cently many researchers [3] proposed a new method

for solving real-time IK without using the Jacobian
matrix based on the position of end-effector (ee),
using numerical and analytical mathematical tools but
not mentioned exactly the performance as the time
consuming to get the solution, in [4] also applied
alike method for hyper-redundant manipulator arm.
[5] combined two methods as a real-time IK solver for
a human-like arm manipulator based on closed-form
analytical equations for a given position while others
[6] presented an on-line adaptive strategy based on the
Lyapunov stability theory in addition to Radial Basis
Function Network (RBFN) and quadratic program-
ming which requires a complex hardware resources,
the simulation was done for the position of ee in ad-
dition to avoid obstacles and was conducted on the
7-DOF PA-10 robot manipulator. In [7] a kinematic
and time-optimal trajectory planning was considered
for redundant robots, two approaches were presen ted,
joint space decomposition and a numerical null-space
method for a given pose. they were tested by 7-DOF
industrial robots and demand high consuming time
for resolving IK.

РОБОТЫ, МЕХАТРОНИКА
И РОБОТОТЕХНИЧЕСКИЕ СИСТЕМЫ

715Мехатроника, автоматизация, управление, Том 19, № 11, 2018

Metaheuristic optimization algorithms are an
encouraging alternative approach to traditional IK
techniques due to their strong performance on chal-
lenging and high-DOF problems in many various
domains, the solution can be solved by minimizing
an objective function allowing the end-effector to
follow the desired path avoiding dynamics singu-
larities and obstacles [8] was explained and proved
that DE has emerged as one of the most powerful
and versatile global numerical optimizers for non-
differential and multimodal problems, they showed
challenges of the variants of DE which may provide
less time and more robustness in solving IK. In [9]
presented a quadratic programming with branching
idea with a weighted multi-objective function which
gave a short-time response about seconds while [10]
showed a comparative research of four different
heuristic optimization algorithms GA, PSO, QPSO
and GSA for 4-DOF manipulator in order to reach
the target as a position. they proved that the Quan-
tum PSO is the best with average execution time of
1.65 seconds. In [11] investigated the performance
of many PSO variants to resolve two DOF IK prob-
lem for a given position, they proved that PSO-VG
is the fast variant compared with others which took
a less average convergence iteration about 740 for 15
particles. [12] derived and minimized a fitness func-
tion to resolve the pose IK problem based on PSO
for multiple DOF up to 180, they concluded that
the runtime and iteration are 4.22 seconds and 118
respectively for a 9-DoF. In [13] a hybrid me thod
called DEMPSO based on differential evolution
(DE) and Modified PSO algorithms was developed
in order to minimize the solution time for the pose,
moreover presented a comparative study for several
swarm intelligent optimization algorithms as ABC
and ACO algorithms, based on their results, the
DEMPSO had a great advantages at execution time
for reaching the position while similar performance
with DE for the orientation aim, the simulation
was conducted with population size 30 for 10-DoF
serial-parallel robot, furthermore, [14] a compari-
son of three evolutionary algorithms as GA, PSO,
and DE was discussed. In [15] presented a com-
parative study of IK solver for a mobile manipulator
using DE algorithm, they concluded that hybrid DE
and biogeography-based optimization called HBBO
provides good results but a higher computational
cost for weighted fitness function and pose target,
in contrast, DE proved to be superior to PSO, CS,
and TLBO, additionally the PSO algorithm verified
that it does not solve the inverse kinematic prob-
lems correctly. In [16] a developed methodology

was applied to synthesize of six-bar mechanism, it
used DE with geometric centroid of precision posi-
tions technique (GCCP). [17] used DE to improve
the design of a fuzzy controller for a wall-following
hexapod robot. In addition [18] proposed a modified
self-adaptive DE in order to improve the static force
of humanoids robot, showing robust, safe, reliable
performance compared with other metaheuristics.
While [19] presented an approximation tool for the
inverse model of the industrial robot based on an
adaptive neural model optimized by advance DE.
[20] proposed an optimal joint trajectory planning
method using forward kinematics of 7-DoF free-
floating space robot based on DE method, also they
depict the general aspect of equality and inequality
constraints which govern each joint in the manipu-
lator. On another-side, [21] introduced an algorithm
shuffled frog-leaping algorithm SFLA which is a
population-based collaborative search metaphor in-
spired by natural memetics, it relies on a knowledge
called ‘meme’ which causes someone to replicate
it or to repeat it to someone else, spreading from
brain to brain. All transmitted knowledge is me-
metic and spreading is much faster than a gene,
the effectiveness, suitability, and global optimal re-
solving have been demonstrated in addition to short
processing time. Additionally, [22] proposed an
MSFLA for a high dimensional continuous function
optimization. this method yields a strong robustness
and best convergence also presented a comparative
study for PSO, SFLA, MSFLA, and MSFLA-EO
which designated that MSFLA is better than others.
In [23] a modified SFLA was assumed for obtain-
ing the optimum preventive maintenance schedul-
ing of generating units in power system. While [24]
presented a comparative study among five evolu-
tionary-based optimization algorithms as GA, MA,
PSW, ACO, and SFLA, they showed the processing
time for solving the F8 function and concluded that
the SFLA is the best.

In this work, we applied two types of meta-
heuristic algorithms in order to solve the inverse
kinematics of a mobile manipulator [25] as a con-
strained optimization problem the proposed algo-
rithms are the differential evolution (DE) method
and modified shuffled frog-leaping algorithm (MS-
FLA), which characterized as an accurate and fast
convergence in discovering the solution based on
the previous literature study. Initially, we define an
objective function to minimize the error between
the desired and the actual end-effector pose. The
objective function takes into account the minimal
movement between the previous and the actual joint

716 Мехатроника, автоматизация, управление, Том 19, № 11, 2018

configurations. To overcome the constrained prob-
lems, we use a penalty function to penalize all those
manipulator configurations that violate the allowed
joint boundary. Hence, the proposed approach esti-
mates the feasible manipulator configuration needed
to reach the desired end-effector pose. The remain-
der of this paper is organized as follows: Section 2
and 3 present the architecture and kinematics of
a robotic manipulator. Section 4 introduces meta-
heuristic optimization algorithms and the weighted
objective function. Section 5 shows the simulation
results of the proposed trajectory planning methods
applied to a 6-DOF kinematically manipulator. The
conclusive observations are listed in the last section.

2. The architecture of the aerial manipulator

The aerial manipulator was designated in [25]
as a human-like arm and consists of 20 degrees of
freedom. It was proposed that each joint has one
DOF with revolute type while the links are a type
of rigid-body which organized from the base-frame
located in the center of aerial vehicle’s gravity with
a constant displacement based on a design conside-
ration for the mass distribution. While the other
main-frame called hand-frame located in the center
of the hand part 7th frame (in the Fig. 1 has a num-
ber 7, see the 3rd side of cover) that was considered
as a reference node for combining and moving the
fingers in order to perform specific object-oriented
tasks [25]. Furthermore, the realized prototype of
the manipulator as shown in Fig. 1 was divided into
two parts are arm-part and hand-part, the arm-part
architecture consists of 6 joints originated from
shoulder joints (J1, J2) to the forearm joint (J3) and
finally, wrist joints (J4, J5, J6) along to center hand’s
frame. The specifications of the arm-part are given
in the Table 1 which consists of six joints and four
3d-printed links in addition to two metal links as
metal horns and brackets, besides, the scheme of
this part is designated to be anti-resistance of the
air friction in design as possible as shown in the
figure. the last link is the hand-part which consists
of five fingers driven by five micro-servo motors
based on linkage mechanism out of scope in this
paper. the total number of degrees-of-freedom for
the intended arm-part is six.

The navigation process of the arm-part is per-
formed by controlling the motion of hand-part lo-
cated in the 7th frame in the workspace related to
the base frame. Furthermore, this process is com-
puted by analyzing the forward and inverse kine-
matics. the goal of this paper is to study the solu-
tions of the inverse kinematics in order to realize
this movement precisely within a short time. Hence,
each of links was described by some of the proper-
ties as material type, stiffness, toughness, bearing
gear, shape, weight, inertia, lubrication in addition
to aerodynamic parameters. The values of motion
range for the joints are manifested in the following
Table 2 which readjusted to be more fitting for ac-
complishing more tasks compared to real joints of
the humanlike arm [25].

3. Manipulator Kinematics

Now, in order to determine the relationship
between the coordinate frames, that are assigned
to the links and joints of the robot, homogeneous
transformations are required. Three parameters are
employed to describe the rotation while other three
parameters are used to define the translation. ac-
cordingly, the Denavit Hartenberg (DH) conven-
tion was used to describe kinematically the rigid
motion by assigning the values of four quantities for
each link. Two describe the link itself, and two de-
scribe the link’s connection to a neighboring link.
Where θ, a, d and α are the joint angle, link length,
link offset and link twist between joints. Conside-
ring Ti is the homogeneous transformation matrix
between the frames that is a function of θ while the
other three parameters are constant. The data in

Table 2

The motion range for the joints of the Arm-Part

Arm-part
angle θ1 θ2 θ3 θ4 θ5 θ6

range –90 → +90 0→ +180 –90 → +90 –90 → +90 –90 → +90 –70 → +90

Table 1

Specification of the Arm-Part

li Between Ji and Ji + 1 Length (cm)

l0 link (Between J0 and J1) 3.5

l1 link (Between J1 and J2) 6.5

l2 link (Between J2 and J3) 28.2

l3 link (Between J3 and J4) 21

l4 link (Between J4 and J5) 2.5

l5 link (Between J5 and J6) 7.5

l6 link (Between J6 and J7) 5

717Мехатроника, автоматизация, управление, Том 19, № 11, 2018

Table 3

Link parameters of the arm-part of manipulator

Modified Denavit Hartenberg Standard Denavit Hartenberg

αi – 1 αi – 1 [cm] di [cm] θi Initial Value of θi αi ai [cm] di [cm] θi Initial Value of θi Joint Offset

–π/2 l0 0 θ1 π/2 –π/2 6.4 0 θ1 0 0

π/2 l1 0 θ2 –π/2 0 30.2 0 θ2 –π/2 –π/2

0 l2 0 θ3 –π/2 π/2 0 0 θ3 π/2 π/2

–π/2 0 l3 + l4 θ4 0 π/2 0 23.5 θ4 0 0

π/2 0 0 θ5 –π/2 –π/2 5.3 0 θ5 π/2 π/2

–π/2 l5 0 θ6 0 0 5.6 –2 θ6 0 0

the Table 3 present link parameters of the arm-part
based on DH strategy in two formulas: standard and
modified DH. Since the standard form was used in
simulation by LabVIEW Robotics module in order
to validate the design. The position of all links of
an arm-part manipulator can be specified with a set
of 6 joint variables from the shoulder's joints till
wrist's joints. This set of variables is often referred
to as a 6 Ѕ 1 joint vector [25].

The space of all joint variables is referred to as
joint-space Θ = [θ1, θ2, ..., θ6]

T, here we have been
concerned with computing the Cartesian space rep-
resentation from knowledge of the joint-space in-
formation. hence the homogeneous transformations
of links are as following. these transformations,

1 ,i
iT

− will be a function of all joint variables. If the
robot’s joint-position sensors are estimated by servo
mechanisms, the Cartesian position and orientation

of the hand-part can be computed by 0
7T [25].

1 1 0 2 2 1

0 1
1 2

1 1 2 2

3 3 2 4 4

3 3 3 42 3
3 4

4 4

5 5

4
5

5 5

0 0

0 0 1 0 0 0 1 0
, ,

0 0 0 0

0 0 0 1 0 0 0 1

0 0 0

0 0 0 0 1
, ,

0 0 1 0 0 0

0 0 0 1 0 0 0 1

0 0

0 0 1 0

0 0

0 0 0 1

C S l C S l

T T
S C S C

C S l C S

S C l l
T T

S C

C S

T
S C

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥− −
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢
⎢
⎣ ⎦

56 6

5
6

6 6

6

6
7

0

0 0 1 0
, ,

0 0

0 0 0 1

1 0 0

0 1 0 0
.

0 0 1 0

0 0 0 1

C S l

T
S C

l

T

−⎡ ⎤
⎢ ⎥
⎢ ⎥=

⎥ ⎢ ⎥− −
⎥ ⎢ ⎥

⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

Where the computations of the transformation
as follows:

11 12 13 11 6

21 22 23 21 60
7

31 32 33 31 6

,

0 0 0 1

b b b b l

b b b b l
T

b b b b l

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

11 1 23 4 1 4 5 1 23 5 6

1 23 4 5 1 4 5 5 1 23 6

12 1 23 4 1 4 5 1 23 5 6

1 23 4 1 4 6

13 1 23 4 1 4 5 1 23 5

21

[()]

() ;

[()]

() ;

() ;

(

b C C C S S C C S S C

C C C S S S S S S S S

b C C C S S C C S S S

C C S S S C

b C C C S S S C S S

b C

= θ θ θ − θ θ θ − θ θ θ θ +

+ − θ θ θ θ + θ θ θ − θ θ θ θ

= − θ θ θ − θ θ θ − θ θ θ θ +

+ − θ θ θ + θ θ θ

= − θ θ θ − θ θ θ − θ θ θ
= θ1 23 4 23 5 23 46 6

22 23 4 5 23 5 23 46 6

23 4 23 5 23 5

31 1 23 1 4 5 1 23 5 6

1 23 4 1 4 6

32 1 23 1 4 5 1 23 5 6

) ;

() ;

;

[()]

() ;

[()]

S C C S C S S S

b S C C C S S S S C

b C S S C C

b S C C S C S S S C

S C S C C S

b S C C S C S S S S

θ θ + θ θ θ − θ θ θ

= − θ θ θ + θ θ θ − θ θ θ

= − θ θ θ + θ θ
= θ θ − θ θ θ + θ θ θ θ +

+ θ θ θ + θ θ θ

= − θ θ − θ θ θ + θ θ θ θ

1 23 4 1 4 6

33 1 23 1 4 5 1 23 5

() ;

() .

S C S C C C

b S C C S S S S C

−

− θ θ θ + θ θ θ

= θ θ − θ θ θ + θ θ θ

4. Proposed Optimization Techniques
or solving kinematics

The evolutionary optimization algorithms can
solve the complicated nonlinear equations completely
and efficiently. The solution of the inverse kinematics
for the manipulator results is a very difficult prob-
lem to solve by traditional approaches. Besides, the
suggested strategies do not require the inversion of
any Jacobian matrix, and then it avoids singularities
configurations. In this paper, two algorithms used to
optimize this problem are differential evolution and
modified shuffled frog-leaping algorithm. In gene-
ral, this solution is based on the forward kinematics

718 Мехатроника, автоматизация, управление, Том 19, № 11, 2018

equations which always produces a solution in addi-
tion to the objective function. Hence, the general as-
pect of the problem may express as minimizing J(Θ),
constrained by Θmin m Θ m Θmax, furthermore, the
objective function could be defined as the weighted
sum of the errors as follows

() () ()

() () ,
error error

G E G E

J P O

P P O O

Θ = σ Θ + β Θ =

= σ − Θ + ε − Θ
 (1)

where Perror(Θ) and Oerror(Θ) represent the position
and orientation errors respectively and could be
computed as a difference in distance between the
target and current position, in this work we used
Euclidean formula as a representation of distance.
While the parameters σ and ε are the weights of
the position and the orientation, respectively. Let
G = (PG, OG) be a given target end-effector pose
while E(Θ) = (PE(Θ), OE(Θ)) is the current end-
effector pose in the workspace corresponding to
configuration Θ = [θ1, θ2...θ6]

T which can be cal-
culated using forward kinematics — where P refers
to the 3D position vector of pose while O refers
to vector of Roll-Pitch-Yaw Euler Angles of pose
(in radians), respectively, that optimization algo-
rithms are exploring directly in the configuration
space of the manipulator. Hence, each individual

,1 ,2 , ,6[,]Ti i i i j iΘ = θ θ θ θ represents an i-th candi-
date set of joint angles. henceforward, at each itera-
tion, we evaluate each candidate configuration Θi
by passing it through the forward kinema tics model
and measuring the position and orientation error
between where the end-effector would be at con-
figuration Θi and the target end-effector pose. In
order to enforce joint limits, each dimension j of
element Θi should be limited to searching in the
range of valid joint angles Θi ∈ [Θmin, Θmax]. This
can be realized by clamping each dimension j with-
in these bounds at each iteration immediately after
it is updated.

4.1. Differential Evolution Algorithm

The first study on DE algorithm was introduced
by Storn and Price [8], [18], [26]. It is one of the
most powerful stochastic population-based opti-
mization algorithms. It was invented to optimize
functions in an n-dimensional continuous domain.
moreover, it occupies several benefits such as simple
implementation, good performance, global optimi-
zation, robust, low space complexity, converges fast,
and has a good balance between exploration and
exploitation. In particular, DE is relevant to stan-

dard evolutionary algorithms in which a popula-
tion of candidate solutions, initialized to a uniform
sampling of the instance space, are continuously en-
hanced by periodically adding a scaled variant of the
difference vector to a third individual to generate a
new candidate solution and then producing the suc-
ceeding generation. DE consists of four stages: ini-
tialization, mutation, crossover, and selection. The
last three of these are iterated until a termination
condition such as the maximum number of genera-
tions is reached. Nevertheless, unlike other evolu-
tionary algorithms before-mentioned as evolution
strategies, mutation is performed by applying the
scaled difference between members of the popula-
tion. This has the impact of adjusting the step size
to the fitness aspect over time. The implementation
of this method is illustrated in Algorithm 1.

Algorithm 1: The pseudo-code
of the differential evolution algorithm

Initialization:
(1) (1) (1) (1) (1)

max1 2{ , ,..., ,..., }, 1,i NPPopulation g g← Θ Θ Θ Θ ←
Evolution Process:

While Termination criteria not met do
1,for i NP do←

Mutation Process: () ()()g g
i iv mutate← Θ

Crossover Process: () () ()(,)g g g
i i iu crossover v← Θ

Selection Process:
() ()() ()g g
i iif f u f thenΘm

() (1)g g
iinsert u into population +

else
() (1)g g
iinsert into population +Θ

end if
end for

g ← g + 1
end while

The trajectory planning strategy can be trans-
formed into an optimization issue with multiple
constraints. Firstly, it demands to determine the di-
mension of the population NP, the generation num-
ber g with maximum gmax, the dimension real-va-
lued of the individual is equal to the configuration
space of the manipulator, the scale factor F, and the
crossover factor Cr . Then Individuals in the popula-
tion are expressed by: () () () ()

,1 ,2 ,6(, ,...,);g g g g
i i i iΘ = θ θ θ

i = 1, 2, ..., NP, represents the design variable of
the i-th individual in generation g DE begins by
initializing a population of NP to cover as much
as possible of the exploration space constrained
by the minimum and maximum bounds Θmin =
= min,1 min,2 min, min,6[, ,..., ,...,]Tiθ θ θ θ and Θmax =
= max,1 max,2 max, max,6[, ,..., ,...,] .T

iθ θ θ θ Hence, the
i-th individual may then be initialized as: (1)

,i jθ =
= min, max, min,(0, 1)[],j j jHθ + θ −θ with H = rand(0, 1)

719Мехатроника, автоматизация, управление, Том 19, № 11, 2018

being a uniformly random value between 0 and 1.
Henceforward, the mutant strategy is adopted
after initialization to generate a donor vector

() () () ()
,1 ,2 ,6(, ,...,)g g g g

i i i iν = υ υ υ by its corresponding target

vector ()g
iΘ [8, 20] have been proposed:

DE/rand/1:

1 2 3

() () () ()()g g g g
ii r r rFν = Θ + Θ − Θ

DE/best/2:

1 2 3 4

() () () () () ()() ()g g g g g g
i ii best r r r rF Fν = Θ + Θ − Θ + Θ − Θ

DE/current-to-best/1:

1 2

() () () () () ()() ()g g g g g g
i ii i ibest r rF Fν = Θ + Θ − Θ + Θ − Θ

either-or: this strategy merges two methods to gene-
rate the donor vector [26].

 1 2 3

1 2 1 3 1

() () () ()

() () () () () ()

[0, 1],

[0, 1]

 / /1: ()

 / /2:

()

f

f

g g g g
ii r r r

g g g g g g
i r r r r r

p mutation probability

a random number

if a p then

use DE rand F

else

use DE rand

end if

← ∈

← ∈
<

ν = Θ + Θ − Θ

ν = Θ + Κ Θ − Θ + Θ − Θ

Where, Fi is the scaling factor within 0 and 1, in-
dices r1, r2, r3 and r4 are randomly selected integers
from the range [1, NP], such that r1 ≠ r2 ≠ r3 ≠ i.

()g
bestΘ is the best individual in the current popula-

tion, also pf and a are the mutation probability and
random number, respectively. At that point, a cross-
over between ()g

iν and ()g
iΘ is performed to ge-

nerate a trial vector () () () ()
,1 ,2 ,6(, ,...,),g g g g

i i i iu = μ μ μ two
methods were used in this paper, A binomial and
Exponential crossover procedures [8]. The binomial
crossover provides a trial vector by selecting an ele-
ment from the donor vector whenever a randomly
produced value formed from a uniform distribution
is below the crossover rate Cr . Additionally, an ele-
ment h is randomly taken per iteration to always
come from a donor vector as follows:

()
,()

, ()
,

(0, 1) ,

.

g
ri jg

i j g
i j

if i h or rand C

otherwise

⎧υ =⎪μ = ⎨
θ⎪⎩

m

Exponential crossover tries to exploit relation-
ships between adjacent elements. It works by choo-
sing a random starting element and selecting the

next L consecutive elements in a circular manner
from the donor vector. The number of elements L is
calculated as follows:

Algorithm 2: Exponential crossover

0

0

(0,1) r

L

repeat

L

until rand C or L D

←

←
> >

After crossover, the objective function as ex-
plained in Eq. 1 is evaluated for the trial vector ()g

iu .
According to the greedy selection only, as shown in
algorithm 1. Afterward, the better of ()g

iu and ()g
iΘ

will be picked to remain into the next generation.

4.2. Modified Shuffled Frog-Leaping Algorithm

The shuffled frog-leaping algorithm (SFLA)
was developed by Eusuff and Lansey in 2003 [21].
It is a member of the Memetic algorithm family,
a particular kind of a meta-heuristic optimization
approach and a type of evolutionary algorithms
which based on population. It is inspired by the
memetic evolution of frogs exploring food in a lake,
which consolidates the benefits of the genetic-based
MA and the social behavior-based particle swarm
optimization [21]. In general, the SFLA incorpo-
rates two alternating processes: a local exploration
in the sub-memeplex and global information ex-
change among all memeplexes.

The optimization achievement of the SFLA ba-
sically relies on two facts, the first one is the evo-
lution process on each memeplex which embraces
different cultures of frogs, this culture stimulates
fitness values and the evolution process serves as
a local search within memeplex analogous to PSO
algorithm which imitates the social behavior of the
leaping action of frogs searching for food. Addition-
ally, the extra fact is an idea held within each frog
which can be influenced by the ideas of other frogs
from other memeplexes throughout the shuffling
rule, this animates the cooperation process which
it implies an adaptation idea and improves the suc-
cess rate of discovering the solution in optimization
puzzle. In this process, a modification was applied
to the frog-leaping action that it enhances the ex-
ploration manner in the space [22], [23]. Moreover,
the randomization strategy in the evolution process
proffers the algorithm the ability to discover the
local best solution within search space stochasti-
cally in addition to the communication process that
possibly finds a global optimum solution in shorter

720 Мехатроника, автоматизация, управление, Том 19, № 11, 2018

time. The local search and the shuffling processes
continue until defined convergence criteria are sa-
tisfied. The pseudocode of the algorithm was pre-
sented in Algorithm 3.

Algorithm 3: The pseudo-code
of the Shuffled Frog-Leaping Algorithm

Initialization:
Population ← {Θ1, Θ2, ..., Θi, ..., ΘNP};
m ← number of memeplexes;
n ← quantity of frogs in each memeplex;
l ← 1, iN
while (convergence criteria is satisfied Or ubtil met iN) do

Rank Step: Evaluate each frog Θi using a fitness func-
tion;
Partition Step:
Construct an array U of frogs and their fitness’s values;
Sort the array U in descending order based on the fit-
ness column;
Construct (Y k; k = 1, ..., m) memeplexes each including
n frogs;
Evaluation Step:
for l ← 1, iM do

for k ← 1, m do
Determine the worst and best frogs based on their
fitness’s values;
Improve the worst frog position using a leaping dis-
tance;
end for

end for
Shuffle Memeplexes Step: combine the evolved meme-
plexes;
Check Convergence: Update the population best frog’s
position Θg;

1;l l← +
end while

The MSFLA meta-heuristic strategy is summa-
rized in the following steps:

a. Initialization step, construct the population
NP of frogs randomly similar to the first step in
DE algorithm, then Select m, and n, where m is the
number of memeplexes and n is the number of frogs
in each memeplex. Therefore, the total amount of
frogs NP can be calculated as NP = mn, addition-
ally, the i-th frog is expressed as a vector with the
dimension is equal to the configuration space as
follows ,1 ,2 ,6(, ,...,); 1, 2,..., .i i i i i NPΘ = θ θ θ =

b. Rank step, compute the performance value fi
for each frog Θi. Sort the NP frogs in a descending
order according to their fitness. Save them in an ar-
ray U = {fi, Θi; i = 1, 2, ..., NP}, so that i = 1 de-
notes the frog with the best performance value and
could save it as a Θg in each iteration while algorithm
running.

c. Partition Step, partition array U into m meme-
plexes Y1, Y2, ..., Ym, each including n frogs, such

that ((1)) ((1))[, | , ,k k k k k
i i i k m i i k m iY f f f+ − + −= Θ Θ = Θ =

1,...,]; 1,...,i n k m= = . In this process, the first
frog goes to the first memeplex, the second frog
goes to the second memeplex, frog m goes to the
m-th memeplex, and frog m + 1 goes back to the
first memeplex, etc.

d. Memetic Evaluation step, evolve each meme-
plex Y k; k = 1, ..., m according to the frog-leaping
algorithm as follow. Within each memeplex, the
frogs with the best and the worst fitness values are
defined as Θb and Θw, respectively. Furthermore,
the frog with the global best fitness is defined as Θg.
Next, an improvement process is applied to only the
frog with the worst fitness in each cycle. Hence, the
position of the frog with the worst fitness is modi-
fied which emulates the leaping process as follows:
leaping distance D = CLrand(0, 1)[Θb – Θw], then
new position Θw = Θw + D; D ∈]–Dmax, Dmax[.
Where, rand(0, 1) is a random number between 0
and 1, Dmax is the maximum allowed change in a
frog’s position and CL is the modification of the al-
gorithm which it is a constant indicates the amount
of frog-leaping in each memeplex. The evaluation
process for all memeplexes is repeated by an adapt-
able number of iterations called iM until no im-
provement becomes possible.

e. Shuffle Memeplexes Step, shuffle frogs and
replace all memeplexes Y k; k = 1, ..., m into U, such
that U = { fi, Θi; i = 1, 2, ..., NP} similar to initia-
lization phase, afterward sort U in order of decrea-
sing performance value, Update the population best
frog’s position Θg .

f. Check the convergence criteria if satisfied
then stop otherwise return to the partition step and
continue for a specific quantity of iterations which
called iN, finally after each ite ration the first frog
in the sorted list represents a global solution. The
number of iteration iM specifies the depth of search
within memeplexes while the iN governs the solu-
tion producing process.

5. Simulation Results and Discussions

In this work, we solve inverse kinematics of the
redundant manipulator with six joints to follow a des-
tination pose. The manipulator’s joints correspond to
the variable θj, J = 1, 2, ..., 6 had been constrained by
a Table 2. The DH table is presented in Table 3. In
the inverse kinematics experiments, the desired end-
effector pose for the arm-part of the manipulator was
determined as a variable G = (PG, OG) = (x, y, z, roll,
pitch, yaw) = (–20, 3, 40, 0, 10, 15). Moreover, the

721Мехатроника, автоматизация, управление, Том 19, № 11, 2018

Table 5

Inverse Kinematics Results of Differential Evolution Algorithm

Test
No.

Popu-
lation

Itera-
tions

J(Θ) Total Error
Execution
Time [ms]

Reaching Target (x, y, z, roll, pitch, yaw)

1 6 250 4.60464 –8.22166 247 (–20.0619, 3.00659, 40.0358, 3.74, –4.49369, 17.5544)

2 6 500 1.53162 1.78975 594 (–19.56, 2.64638, 39.8767, 0.465805, 13.2258, 13.135)

3 8 600 1.19735e–5 8.26589e–6 861 (–20, 3, 40, –8.25797e–6, 10, 15)

4 8 800 3.60207e–7 6.13326e–7 1125 (–20, 3, 40, 2.59552e–8, 10, 15)

5 10 500 0.000230295 0.000677389 986 (–19.99, 3.0001, 40.00001, 4.21087e–5, 10.004, 15)

6 10 750 1.55363e–7 1.13202e–7 1301 (–20, 3, 40, 1.13202e–7, 10, 15)

7 10 1000 4.53651e–9 –3.13365e–9 1917 (–20, 3, 40, –1.40416e–9, 10, 15)

8 12 250 0.22408 –0.001729 567 (–19.8094, 3.06099, 40.1352, 0.0528143, 10.1526, 15.087)

9 12 400 0.0004035 0.000107144 835 (–20.0001, 3.00003, 40, –0.0006738, 9.999932, 14.9998)

10 12 500 3.42549e–5 0.000107144 1146 (–20, 3, 4, 3.25415e–5, 10, 15)

11 20 500 0.000828201 0.00156291 1736 (–19.9994, 3.00002, 40.0002, 0.000503176, 10.0009, 14.999)

12 20 750 1.28825e–6 –4.33271e–6 2628 (–20, 3, 40, –3.29831e–6, 10, 15)

13 30 500 0.00107932 –0.00085163 2614 (–20.0004, 2.99975, 39.999, 0.000577463, 9.999, 15.0007)

14 30 1000 9.20132e–7 3.09732e–8 5255 (–20, 3, 40, 3.978432e–8, 10, 15)

Table 4

Setting of the DE Algorithm

Mutation Method Random

Scale Factor 0.9

Crossover Method Uniform

Crossover Probability 0.95

parameters of the objective function were adjusted
as follows ε = 1 – β = 0.7 so there is a balance be-
tween position and orientation to be optimized. In
case of DE algorithm, Table 4 shows DE settings
while Table 5 presents the results of utilizing DE
for some scenarios.

As presented in Table 6, it is obvious that the ex-
ecution time depends on the size of the population
and the iterations, respectively. Further, the popu-
lation size achieves the diversity feature which let
the algorithm explores more solutions in the work-
space while the high iteration gives a solution much
closer to the target. Hereafter, a Fig. 2 presents the
values of the objective function, while the Fig. 4
and Fig. 5 illustrate the position and orientation of
end-effector for the manipulator after applying the
solutions to validate IK solver. Forthwith, the Fig. 3
(see the 3rd side of cover) demonstrates the con-
figuration joints for reaching the setpoint G, which
shows multiple solutions after each new iteration be-

Fig. 2. Displays the values of the objective function after applying
IK-DE solver

Fig. 4. Illustrates the position of end-effector for the manipulator
after applying the solutions to validate IK-DE solver

722 Мехатроника, автоматизация, управление, Том 19, № 11, 2018

cause of the redundant nature of our manipulator,
in addition, each new solution is considered as a
global solution within its iteration, new high itera-
tion grants algorithm an ability to explore a new
global solution. therefore, it’s important to alter the
settings of DE to conclude one solution based on
the objective function in shorter time.

By analyzing the results in the Table 5 and Fig. 3,
it was explicit that the test number 9 is the proper
solution with a convergence time equal to 835 ms
and a total error equal to –0.001729 taking into
consideration that the adaptation of DE parameters
nearby setting of this result may improve the solu-
tion to be more fitting but longer convergence time.

In case of MSFLA, the parameters of the algo-
rithm were introduced in the Table 6 additionally,
the summary of the results of utilizing the algo-
rithm for multiple scenarios was represented in the
Table 7.

As presented in the results, the amounts of execu-
tion time are longer than those in the experimental
results of DE algorithm. The population of the DE
algorithm is created randomly and the size of the
population should be selected based on the problem
and dimension of the workspace in order to cover all
the space and consequently obtain the global solution
quickly. Besides, the maximum number of iteration
depends on the accuracy required on the problem.

Table 6

Setting of the MSFL Algorithm

m Number of memeplexes 3

n Number of frogs within memeplexes NP/m

CL Amount of Leaping 1.3

Table 7

Inverse Kinematics Results of MSFL Algorithm

Tests Popula tion
Iterations

J(Θ) Total Error
Execution
Time [ms]

Reaching Target (x, y, z, roll, pitch, yaw)
iN iM

1 20 30 10 11.618 29.7156 729 (–15.7365, 5.43, 52.57, 6.63, 12.66, 16.164)

2 30 30 10 7.6614 12.0878 1045 (–21.1832, 2.91528, 50.77, –0.201742.10.0158, 14.8583)

3 40 30 15 10.5382 19.2097 1685 (–25.08, 8.56, 46.818, –6.2, 9.6, 5.4251)

4 40 40 30 18.4625 18.4625 4526 (–25.2365, 8.34134, 47.591, –2.537.8.6258.14.1301)

5 60 40 30 8.2925 8.2925 6645 (–24.4625, 0.04208, 44.589, 1.655, 11.1161, 14.054)

6 80 50 40 11.0236 11.0236 13 540 (–26.9977, 3.59399, 42.871, –0.0686, 9.816, 15.6762)

7 100 60 60 29.7744 29.7744 24 191 (–20.0331, 30.03867, 39.9706, –7.709, 3.6786, –0.7192)

8 130 70 60 0.151062 0.648529 46 282 (–20.09, 2.988, 40.004, 0.20727, 9.642, 14.894)

9 170 60 50 0.616846 2.16791 40 459 (–20.1505, 2.8357, 40.0911, 0.8872, 10.3554, 16.149)

10 200 90 40 0.113833 0.297961 57 362 (–19.9268, 3.00718, 39.98, –0.1344, 10.1049, 14.894)

11 200 100 60 0.0728863 0.378871 92 779 (–20.0018, 2.99737, 39.9906, –0.13745, 10.1506,14.9178)

12 200 120 80 2.76717 5.81648 150 246 (–20.4796, 4.15287, 40.4894, 0.80744, 4.08227, 13.7867)

13 200 200 100 2.67129 1.93396 318 481 (–19.2649, 2.23482, 41.9365, –0.978994, 10.8776, 11.4859)

14 250 90 40 0.003134 0.0165418 69 818 (–19.9995, 3.00023, 39.9998, 0.00495, 10.0061, 14.995)

15 250 140 80 1.26635 6.55357 215 027 (–20, 3, 10, –7.01976e–10, 10, 15)

16 250 140 100 4.64762e-9 1.05135e-8 260 325 (–20.0982, 2.9671, 40.0008, –1.68742, 6.68997, 13.5741)

17 300 140 80 1.01476e-9 3.3374e-9 255 989 (–20, 3, 40, 1.16487e–9, 10, 15)

18 500 90 40 5.4912e-10 9.9601e-10 136 888 (–20, 3, 40, –1.66261e–11, 10, 15)

19 500 200 100 3.02894e-15 1.5664e-14 68 1646 (–20, 3, 40, 3.22962e–15, 10, 15)

20 1000 30 45 0.0968137 0.0255 95197 (–20.0305, 3.0454, 40.0451, –0.0037, 10.957, 14.8752)

Fig. 5. Illustrates the orientation of end-effector for the manipulator
after applying the solutions to validate IK-DE solver

723Мехатроника, автоматизация, управление, Том 19, № 11, 2018

Hereafter, the Fig. 6 displays the values of the
objective function, while the Fig. 7 and Fig. 8 (see
the 3rd side of cover) represent the position and ori-
entation of end-effector for the manipulator after
applying the solutions to validate IK solver. Forth-
with, the Fig. 9 (see the 3rd side of cover) shows the
configuration joints for reaching the setpoint G.

6. Conclusion

The design and kinematics of a human-size aerial
manipulation robot have been introduced. this de-
sign has been separated into two parts: arm-part
and hand part in order to be easier in the naviga-
tion process and control system. the purpose of this
study is to observe a perception of actuating the
manipulator so fast; to reach a target point in the
3D workspace, robotically investigate a kinematics
solution. therefore, in this paper, we have presented
a methodology to solve the inverse kinematics of
a 6-DOF lightweight manipulator based on evolu-
tionary algorithms. Furthermore, the metaheuristic
algorithms included in the simulations were the dif-
ferential evolution (DE) and modified shuffled frog-
leaping (MSFL). These algorithms were designated
as multi-objective, multi-dimensional, stochastic
and diversity methods. The simulation and experi-
ments were conducted to prove the effectiveness of
each approach. Consequently, the DE had the best
performance over SFLA with the high success rate
and the fast convergence as well, the simulation was

carried out through PC with following specifica-
tions (Core i7, Q740, 1.73GHz). Subsequently, all
the optimization techniques of population-based
algorithms depend on the concept of generating a
population randomly then relocate or migrate indi-
viduals in the space to obtain the local/global solu-
tion. besides, it is not arduous to promote those two
algorithms and proffer them an adaptive feature as
we fulfilled with MSFLA in this research to deliver
more stabilization plus little run-time. Finally, the
aim of this study was acknowledged as one from
multiple objectives of our project, which are control-
ling the aerial manipulator integrated into an aerial
vehicle, in the space additionally, studying of the dis-
turbances effects on the vehicle and stabilizing the
motion of the manipulator.

References

 1. Buss S. R. (2004). Introduction to inverse kinematics with

jacobian transpose, pseudoinverse and damped least squares me-

thods. IEEE Journal of Robotics and Automation, 17 (1—19), 16.

 2. Dulęba I., & Opałka M. (2013). A comparison of Jacobian-

based methods of inverse kinematics for serial robot manipulators,

International Journal of Applied Mathematics and Computer Science,

23(2), 373—382.

 3. Wang X., Zhang D., Zhao C. (2017). The inverse kinema-

tics of a 7R 6-degree-of-freedom robot with non-spherical wrist,

Advances in Mechanical Engineering, 9(8), 1687814017714985.

 4. Ananthanarayanan H., & Ordóñez R. (2015). Real-time

Inverse Kinematics of (2n + 1) DOF hyper-redundant manipulator

arm via a combined numerical and analytical approach, Mecha-

nism and Machine Theory, 91, 209—226.

 5. Tolani D., Badler N. I. (1996). Real-time inverse kinematics

of the human arm, Presence: Teleoperators & Virtual Environments,

5(4), 393—401.

 6. Toshani H., & Farrokhi M. (2014). Real-time inverse ki-

ne matics of redundant manipulators using neural networks and

quadratic programming: a Lyapunov-based approach, Robotics and

Autonomous Systems, 62(6), 766—781.

 7. Reiter A., Müller A., Gattringer H. (2016, October). In verse

kinematics in minimum-time trajectory planning for kinematically

redundant manipulators, In Industrial Electronics Society, IECON

2016 — 42nd Annual Conference of the IEEE (pp. 6873—6878). IEEE.

 8. Geitle M. (2017). Improving differential evolution using in-

ductive programming (Master’s thesis).

 9. Bodily D. M., Allen T. F., Killpack M. D. (2017, May).

Motion planning for mobile robots using inverse kinematics

branching, In Robotics and Automation (ICRA), 2017 IEEE Inter-

national Conference on (pp. 5043—5050). IEEE.

 10. Ayyıldız M., Çetinkaya K. (2016). Comparison of four

different heuristic optimization algorithms for the inverse ki ne-

ma tics solution of a real 4-DOF serial robot manipulator, Neural

Computing and Applications, 27(4), 825—836.

 11. Rokbani N., Alimi A. M. (2013). Inverse kinematics

using particle swarm optimization, a statistical analysis, Procedia

Engineering, 64, 1602—1611.

Fig. 6. Displays the values of the objective function after applying
IK-MSFLA solver

724 Мехатроника, автоматизация, управление, Том 19, № 11, 2018

 12. Collinsm T. J., Shen W. M. (2017, April). Particle swarm
optimization for high-DOF inverse kinematics, In Control, Auto-
mation and Robotics (ICCAR), 2017 3rd International Conference
on (pp. 1—6). IEEE.

 13. Mao B., Xie Z., Wang Y., Handroos H., Wu H., Shi S.
(2017). A hybrid differential evolution and particle swarm opti-
mization algorithm for numerical kinematics solution of remote
maintenance manipulators, Fusion Engineering and Design, 124,
587—590.

 14. Kachitvichyanukul V. (2012). Comparison of three evolu-
tionary algorithms: GA, PSO, and DE, Industrial Engineering and
Management Systems, 11(3), 215—223.

 15. López-Franco C., Hernández-Barragán J., Alanis A. Y.,
Arana-Daniel N., López-Franco M. (2018). Inverse kinematics of
mobile manipulators based on differential evolution, International
Journal of Advanced Robotic Systems, 15(1), 1729881417752738.

 16. Shiakolas P. S., Koladiya D., Kebrle J. (2005). On the
optimum synthesis of six-bar linkages using differential evolu-
tion and the geometric centroid of precision positions technique,
Mechanism and Machine Theory, 40(3), 319—335.

 17. Juang C. F., Chen Y. H., Jhan Y. H. (2015). Wall-following
control of a hexapod robot using a data-driven fuzzy controller
learned through differential evolution, IEEE Transactions on In-
dustrial electronics, 62(1), 611—619.

 18. Pierezan J., Freire R. Z., Weihmann L., Reynoso-Meza G.,
dos Santos Coelho L. (2017). Static force capability optimization
of humanoids robots based on modified self-adaptive differential
evolution, Computers & Operations Research, 84, 205—215.

 19. Ngoc Son N., Anh H. P. H., Thanh Nam N. (2016). Robot
manipulator identification based on adaptive multiple-input and
multiple-output neural model optimized by advanced differential
evolution algorithm, International Journal of Advanced Robotic
Systems, 14(1), 1729881416677695.

 20. Wang M., Luo J., Fang J., Yuan J. (2018). Optimal Tra-
jectory Planning of Free-Floating Space Manipulator Using Dif-
ferential Evolution Algorithm, Advances in Space Research.

 21. Eusuff M., Lansey K., Pasha F. (2006). Shuffled frog-
leaping algorithm: a memetic meta-heuristic for discrete optimiza-
tion, Engineering optimization, 38(2), 129—154.

 22. Li X., Luo J., Chen M. R., Wang N. (2012). An improved
shuffled frog-leaping algorithm with extremal optimisation for
continuous optimization, Information Sciences, 192, 143—151.

 23. Samuel G. G., Rajan C. C. A. (2014). A modified shuff led
frog leaping algorithm for long-term generation maintenance
scheduling, In Proceedings of the Third International Conference
on Soft Computing for Problem Solving (pp. 11—24). Springer, New
Delhi.

 24. Afzalan E., Taghikhani M. A., Sedighizadeh M. (2012).
Optimal placement and sizing of DG in radial distribution net-
works using SFLA, International Journal of Energy Engineering,
2(3), 73—77.

 25. Ibrahim I. N. (2018). Ultra Light-Weight Robotic Manipu-
lator. Bulletin of Kalashnikov ISTU, 2018, vol. 21, no. 1, pp. 12—18,
DOI: 10.22213/2413-1172-2018-1-12-18 (in Russian).

 26. Simon D. (2013). Evolutionary optimization algorithms. John
Wiley & Sons.

