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Abstract

This paper focuses on the real-time kinematics solution of an aerial manipulator mounted on an aerial vehicle, the vehicle’s motion 
isn’t considered in this study. Robot kinematics using Denavit-Hartenberg model  was presented. The fundamental scope of this paper 
is to obtain a global online solution of design configurations with a weighted specific objective function and imposed constraints are 
fulfilled. Acknowledging the forward kinematics equations of the manipulator; the trajectory planning issue is consequently assigned 
to on an optimization issue. Several types of computing methods are documented in the literature and are well-known for solving 
complicated nonlinear functions. Accordingly, this study suggests two kinds of artificial intelligent techniques which are regarded 
as search methods; they are differential evolution (DE) method and modified shuffled frog-leaping algorithm (MSFLA). These 
algorithms are constrained metaheuristic and population-based approaches. moreover, they are able to solve the inverse kinematics 
problem taking into account the mobile platform additionally avoiding singularities since it doesn’t demand the inversion of a Jacobian 
matrix. Simulation results are carried out for trajectory planning of 6 degree-of-freedom (DOF) kinematically aerial manipulator and 
confirmed the feasibility and effectiveness of the supposed methods.

Keywords: Inverse Kinematics, Degree-of-Freedom (DOF), Human-like Aerial Manipulator, Optimization Algorithms, 
metaheuristic and Revolutionary Methods, differential evolution (DE), Shuffled Frog Leaping Algorithm

УДК 621.865:004.896 DOI: 10.17587/mau.19.714-724

I. N. Ibrahim, Ph. D. Student, ibrncfe@gmail.com, http://orcid.org/0000-0001-9544-3020,
Department of Mechatronics and Robotics, Kalashnikov Izhevsk State Technical University,

Izhevsk, 426069, Russian Federation

A Comparative Study for an Inverse Kinematics Solution
of an Aerial Manipulator Based on the Differential Evolution Method

and the Modifi ed Shuffl ed Frog-Leaping Algorithm
Accepted on July 16, 2018

1. Introduction

The inverse kinematics (IK) solver is a prima-
ry problem in robotic manipulation, particularly 
when demand real-time and precision in calcula-
tions. Mathematically, the numerical solution of ki-
nematics is intricate because of the high degree of 
nonlinearity, furthermore, the Linear and dynamic 
programming techniques usually fail or reach lo-
cal optimum in solving NP-hard problems with a 
large number of variables and non-linear objective 
functions, moreover, Traditionally Jacobian-based so-
lutions are identified to scale inadequately with the 
high number of degrees of freedom (DOF) [1] in ad-
dition to singularities existence. In contrast, [2] pre-
sented a comparative study of several methods based 
on the Jacobian matrix, clarifying that the modi-
fied  Levenberg—Marquardt method is much better 
for a quite large set of random configurations than 
others but may lose convergence compared to Jaco-
bian transpose and Pseudocode inverse methods. Re-
cently many researchers [3] proposed a new method 

for solving real-time IK without using the Jacobian 
matrix based on the position of end-effector (ee),
using numerical and analytical mathematical tools but 
not mentioned exactly the performance as the time 
consuming to get the solution, in [4] also applied 
alike method for hyper-redundant manipulator arm. 
[5] combined two methods as a real-time IK solver for 
a human-like arm manipulator based on closed-form 
analytical equations for a given position while others 
[6] presented an on-line adaptive strategy based on the 
Lyapunov stability theory in addition to Radial Basis 
Function Network (RBFN) and quadratic program-
ming which requires a complex hardware resources, 
the simulation was done for the position of ee in ad-
dition to avoid obstacles and was conducted on the 
7-DOF PA-10 robot manipulator. In [7] a kinematic 
and time-optimal trajectory planning was considered
for redundant robots, two approaches were presen ted, 
joint space decomposition and a numerical null-space 
method for a given pose. they were tested by 7-DOF 
industrial robots and demand high consuming time 
for resolving IK.

РОБОТЫ, МЕХАТРОНИКА
И РОБОТОТЕХНИЧЕСКИЕ СИСТЕМЫ
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Metaheuristic optimization algorithms are an 
encouraging alternative approach to traditional IK 
techniques due to their strong performance on chal-
lenging and high-DOF problems in many various 
domains, the solution can be solved by minimizing 
an objective function allowing the end-effector to 
follow the desired path avoiding dynamics singu-
larities and obstacles [8] was explained and proved 
that DE has emerged as one of the most powerful 
and versatile global numerical optimizers for non-
differential and multimodal problems, they showed 
challenges of the variants of DE which may provide 
less time and more robustness in solving IK. In [9] 
presented a quadratic programming with branching 
idea with a weighted multi-objective function which 
gave a short-time response about seconds while [10] 
showed a comparative research of four different 
heuristic optimization algorithms GA, PSO, QPSO 
and GSA for 4-DOF manipulator in order to reach 
the target as a position. they proved that the Quan-
tum PSO is the best with average execution time of 
1.65 seconds. In [11] investigated the performance 
of many PSO variants to resolve two DOF IK prob-
lem for a given position, they proved that PSO-VG 
is the fast variant compared with others which took 
a less average convergence iteration about 740 for 15 
particles. [12] derived and minimized a fitness func-
tion to resolve the pose IK problem based on PSO 
for multiple DOF up to 180, they concluded that 
the runtime and iteration are 4.22 seconds and 118 
respectively for a 9-DoF. In [13] a hybrid me thod 
called DEMPSO based on differential evolution 
(DE) and Modified PSO algorithms was developed 
in order to minimize the solution time for the pose, 
moreover presented a comparative study for several 
swarm intelligent optimization algorithms as ABC 
and ACO algorithms, based on their results, the 
DEMPSO had a great advantages at execution time 
for reaching the position while similar performance 
with DE for the orientation aim, the simulation 
was conducted with population size 30 for 10-DoF 
serial-parallel robot, furthermore, [14] a compari-
son of three evolutionary algorithms as GA, PSO, 
and DE was discussed. In [15] presented a com-
parative study of IK solver for a mobile manipulator
using DE algorithm, they concluded that hybrid DE 
and biogeography-based optimization called HBBO 
provides good results but a higher computational 
cost for weighted fitness function and pose target, 
in contrast, DE proved to be superior to PSO, CS, 
and TLBO, additionally the PSO algorithm verified 
that it does not solve the inverse kinematic prob-
lems correctly. In [16] a developed methodology 

was applied to synthesize of six-bar mechanism, it 
used DE with geometric centroid of precision posi-
tions technique (GCCP). [17] used DE to improve 
the design of a fuzzy controller for a wall-following 
hexapod robot. In addition [18] proposed a modified 
self-adaptive DE in order to improve the static force 
of humanoids robot, showing robust, safe, reliable 
performance compared with other metaheuristics. 
While [19] presented an approximation tool for the 
inverse model of the industrial robot based on an 
adaptive neural model optimized by advance DE. 
[20] proposed an optimal joint trajectory planning 
method using forward kinematics of 7-DoF free-
floating space robot based on DE method, also they 
depict the general aspect of equality and inequality 
constraints which govern each joint in the manipu-
lator. On another-side, [21] introduced an algorithm 
shuffled frog-leaping algorithm SFLA which is a 
population-based collaborative search metaphor in-
spired by natural memetics, it relies on a knowledge 
called ‘meme’ which causes someone to replicate 
it or to repeat it to someone else, spreading from 
brain to brain. All transmitted knowledge is me-
metic and spreading is much faster than a gene, 
the effectiveness, suitability, and global optimal re-
solving have been demonstrated in addition to short 
processing time. Additionally, [22] proposed an
MSFLA for a high dimensional continuous function 
optimization. this method yields a strong robustness 
and best convergence also presented a comparative 
study for PSO, SFLA, MSFLA, and MSFLA-EO 
which designated that MSFLA is better than others. 
In [23] a modified SFLA was assumed for obtain-
ing the optimum preventive maintenance schedul-
ing of generating units in power system. While [24] 
presented a comparative study among five evolu-
tionary-based optimization algorithms as GA, MA, 
PSW, ACO, and SFLA, they showed the processing 
time for solving the F8 function and concluded that 
the SFLA is the best.

In this work, we applied two types of meta-
heuristic algorithms in order to solve the inverse 
kinematics of a mobile manipulator [25] as a con-
strained optimization problem the proposed algo-
rithms are the differential evolution (DE) method 
and modified shuffled frog-leaping algorithm (MS-
FLA), which characterized as an accurate and fast 
convergence in discovering the solution based on 
the previous literature study. Initially, we define an 
objective function to minimize the error between 
the desired and the actual end-effector pose. The 
objective function takes into account the minimal 
movement between the previous and the actual joint 
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configurations. To overcome the constrained prob-
lems, we use a penalty function to penalize all those 
manipulator configurations that violate the allowed 
joint boundary. Hence, the proposed approach esti-
mates the feasible manipulator configuration needed 
to reach the desired end-effector pose. The remain-
der of this paper is organized as follows: Section 2 
and 3 present the architecture and kinematics of 
a robotic manipulator. Section 4 introduces meta-
heuristic optimization algorithms and the weighted 
objective function. Section 5 shows the simulation 
results of the proposed trajectory planning methods 
applied to a 6-DOF kinematically manipulator. The 
conclusive observations are listed in the last section.

2. The architecture of the aerial manipulator

The aerial manipulator was designated in [25] 
as a human-like arm and consists of 20 degrees of 
freedom. It was proposed that each joint has one 
DOF with revolute type while the links are a type 
of rigid-body which organized from the base-frame 
located in the center of aerial vehicle’s gravity with 
a constant displacement based on a design conside-
ration for the mass distribution. While the other 
main-frame called hand-frame located in the center 
of the hand part 7th frame (in the Fig. 1 has a num-
ber 7, see the 3rd side of cover) that was considered 
as a reference node for combining and moving the 
fingers in order to perform specific object-oriented 
tasks [25]. Furthermore, the realized prototype of 
the manipulator as shown in Fig. 1 was divided into 
two parts are arm-part and hand-part, the arm-part 
architecture consists of 6 joints originated from 
shoulder joints (J1, J2) to the forearm joint (J3) and 
finally, wrist joints (J4, J5, J6) along to center hand’s 
frame. The specifications of the arm-part are given 
in the Table 1 which consists of six joints and four 
3d-printed links in addition to two metal links as 
metal horns and brackets, besides, the scheme of 
this part is designated to be anti-resistance of the 
air friction in design as possible as shown in the 
figure. the last link is the hand-part which consists 
of five fingers driven by five micro-servo motors 
based on linkage mechanism out of scope in this 
paper. the total number of degrees-of-freedom for 
the intended arm-part is six.

The navigation process of the arm-part is per-
formed by controlling the motion of hand-part lo-
cated in the 7th frame in the workspace related to 
the base frame. Furthermore, this process is com-
puted by analyzing the forward and inverse kine-
matics. the goal of this paper is to study the solu-
tions of the inverse kinematics in order to realize 
this movement precisely within a short time. Hence, 
each of links was described by some of the proper-
ties as material type, stiffness, toughness, bearing 
gear, shape, weight, inertia, lubrication in addition 
to aerodynamic parameters. The values of motion 
range for the joints are manifested in the following 
Table 2 which readjusted to be more fitting for ac-
complishing more tasks compared to real joints of 
the humanlike arm [25].

3. Manipulator Kinematics

Now, in order to determine the relationship 
between the coordinate frames, that are assigned 
to the links and joints of the robot, homogeneous 
transformations are required. Three parameters are 
employed to describe the rotation while other three 
parameters are used to define the translation. ac-
cordingly, the Denavit Hartenberg (DH) conven-
tion was used to describe kinematically the rigid 
motion by assigning the values of four quantities for 
each link. Two describe the link itself, and two de-
scribe the link’s connection to a neighboring link. 
Where θ, a, d and α are the joint angle, link length, 
link offset and link twist between joints. Conside-
ring Ti is the homogeneous transformation matrix 
between the frames that is a function of θ while the 
other three parameters are constant. The data in 

Table 2

The motion range for the joints of the Arm-Part

Arm-part
angle θ1 θ2 θ3 θ4 θ5 θ6

range –90 → +90 0→ +180 –90 → +90 –90 → +90 –90 → +90 –70 → +90

Table 1

Specification of the Arm-Part

li Between Ji and Ji + 1 Length (cm)

l0 link (Between J0 and J1) 3.5

l1 link (Between J1 and J2) 6.5

l2 link (Between J2 and J3) 28.2

l3 link (Between J3 and J4) 21

l4 link (Between J4 and J5) 2.5

l5 link (Between J5 and J6) 7.5

l6 link (Between J6 and J7) 5
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Table 3

Link parameters of the arm-part of manipulator

Modified Denavit Hartenberg Standard Denavit Hartenberg

αi – 1 αi – 1 [cm] di [cm] θi Initial Value of θi αi ai [cm] di [cm] θi Initial Value of θi Joint Offset

–π/2 l0 0 θ1 π/2 –π/2 6.4 0 θ1 0 0

π/2 l1 0 θ2 –π/2 0 30.2 0 θ2 –π/2 –π/2

0 l2 0 θ3 –π/2 π/2 0 0 θ3 π/2 π/2

–π/2 0 l3 + l4 θ4 0 π/2 0 23.5 θ4 0 0

π/2 0 0 θ5 –π/2 –π/2 5.3 0 θ5 π/2 π/2

–π/2 l5 0 θ6 0 0 5.6 –2 θ6 0 0

the Table 3 present link parameters of the arm-part 
based on DH strategy in two formulas: standard and 
modified DH. Since the standard form was used in 
simulation by LabVIEW Robotics module in order 
to validate the design. The position of all links of 
an arm-part manipulator can be specified with a set
of 6 joint variables from the shoulder's joints till 
wrist's joints. This set of variables is often referred 
to as a 6 Ѕ 1 joint vector [25].

The space of all joint variables is referred to as 
joint-space Θ = [θ1, θ2, ..., θ6]

T, here we have been 
concerned with computing the Cartesian space rep-
resentation from knowledge of the joint-space in-
formation. hence the homogeneous transformations 
of links are as following. these transformations, 

1 ,i
iT

−  will be a function of all joint variables. If the 
robot’s joint-position sensors are estimated by servo 
mechanisms, the Cartesian position and orientation 

of the hand-part can be computed by 0
7T  [25].
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Where the computations of the transformation 
as follows:
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4. Proposed Optimization Techniques
or solving kinematics

The evolutionary optimization algorithms can 
solve the complicated nonlinear equations completely 
and efficiently. The solution of the inverse kinematics 
for the manipulator results is a very difficult prob-
lem to solve by traditional approaches. Besides, the 
suggested strategies do not require the inversion of 
any Jacobian matrix, and then it avoids singularities 
configurations. In this paper, two algorithms used to 
optimize this problem are differential evolution and 
modified shuffled frog-leaping algorithm. In gene-
ral, this solution is based on the forward kinematics 
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equations which always produces a solution in addi-
tion to the objective function. Hence, the general as-
pect of the problem may express as minimizing J(Θ), 
constrained by Θmin m Θ m Θmax, furthermore, the 
objective function could be defined as the weighted 
sum of the errors as follows

 
( ) ( ) ( )

( ) ( ) ,
error error

G E G E

J P O

P P O O

Θ = σ Θ + β Θ =

= σ − Θ + ε − Θ
 (1)

where Perror(Θ) and Oerror(Θ) represent the position 
and orientation errors respectively and could be 
computed as a difference in distance between the 
target and current position, in this work we used 
Euclidean formula as a representation of distance. 
While the parameters σ and ε are the weights of 
the position and the orientation, respectively. Let
G = (PG, OG) be a given target end-effector pose 
while E(Θ) = (PE(Θ), OE(Θ)) is the current end-
effector pose in the workspace corresponding to 
configuration Θ = [θ1, θ2...θ6]

T which can be cal-
culated using forward kinematics — where P refers 
to the 3D position vector of pose while O refers 
to vector of Roll-Pitch-Yaw Euler Angles of pose 
(in radians), respectively, that optimization algo-
rithms are exploring directly in the configuration 
space of the manipulator. Hence, each individual 

,1 ,2 , ,6[ , ... ... ]Ti i i i j iΘ = θ θ θ θ  represents an i-th candi-
date set of joint angles. henceforward, at each itera-
tion, we evaluate each candidate configuration Θi 
by passing it through the forward kinema tics model 
and measuring the position and orientation error 
between where the end-effector would be at con-
figuration Θi and the target end-effector pose. In 
order to enforce joint limits, each dimension j of 
element Θi should be limited to searching in the 
range of valid joint angles Θi ∈ [Θmin, Θmax]. This 
can be realized by clamping each dimension j with-
in these bounds at each iteration immediately after 
it is updated.

4.1. Differential Evolution Algorithm

The first study on DE algorithm was introduced 
by Storn and Price [8], [18], [26]. It is one of the 
most powerful stochastic population-based opti-
mization algorithms. It was invented to optimize 
functions in an n-dimensional continuous domain. 
moreover, it occupies several benefits such as simple 
implementation, good performance, global optimi-
zation, robust, low space complexity, converges fast, 
and has a good balance between exploration and 
exploitation. In particular, DE is relevant to stan-

dard evolutionary algorithms in which a popula-
tion of candidate solutions, initialized to a uniform 
sampling of the instance space, are continuously en-
hanced by periodically adding a scaled variant of the 
difference vector to a third individual to generate a 
new candidate solution and then producing the suc-
ceeding generation. DE consists of four stages: ini-
tialization, mutation, crossover, and selection. The 
last three of these are iterated until a termination 
condition such as the maximum number of genera-
tions is reached. Nevertheless, unlike other evolu-
tionary algorithms before-mentioned as evolution 
strategies, mutation is performed by applying the 
scaled difference between members of the popula-
tion. This has the impact of adjusting the step size 
to the fitness aspect over time. The implementation 
of this method is illustrated in Algorithm 1.

Algorithm 1: The pseudo-code
of the differential evolution algorithm

Initialization:
(1) (1) (1) (1) (1)

max1 2{ , ,..., ,..., }, 1,i NPPopulation g g← Θ Θ Θ Θ ←
Evolution Process:

While Termination criteria not met do
1,for i NP do←

Mutation Process: ( ) ( )( )g g
i iv mutate← Θ

Crossover Process: ( ) ( ) ( )( , )g g g
i i iu crossover v← Θ

Selection Process:
( ) ( )( ) ( )g g
i iif f u f thenΘm

( ) ( 1)g g
iinsert u into population +

else
( ) ( 1)g g
iinsert into population +Θ

end if
end for

g ← g + 1
end while

The trajectory planning strategy can be trans-
formed into an optimization issue with multiple 
constraints. Firstly, it demands to determine the di-
mension of the population NP, the generation num-
ber g with maximum gmax, the dimension real-va-
lued of the individual is equal to the configuration 
space of the manipulator, the scale factor F, and the 
crossover factor Cr  . Then Individuals in the popula-
tion are expressed by: ( ) ( ) ( ) ( )

,1 ,2 ,6( , ,..., );g g g g
i i i iΘ = θ θ θ

i = 1, 2, ..., NP, represents the design variable of 
the i-th individual in generation g DE begins by 
initializing a population of NP to cover as much 
as possible of the exploration space constrained 
by the minimum and maximum bounds Θmin =
= min,1 min,2 min, min,6[ , ,..., ,..., ]Tiθ θ θ θ  and Θmax =
= max,1 max,2 max, max,6[ , ,..., ,..., ] .T

iθ θ θ θ  Hence, the 
i-th individual may then be initialized as: (1)

,i jθ  =
= min, max, min,(0, 1)[ ],j j jHθ + θ −θ  with H = rand(0, 1) 
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being a uniformly random value between 0 and 1. 
Henceforward, the mutant strategy is adopted
after initialization to generate a donor vector 

( ) ( ) ( ) ( )
,1 ,2 ,6( , ,..., )g g g g

i i i iν = υ υ υ  by its corresponding target

vector ( )g
iΘ [8, 20] have been proposed:

DE/rand/1:

1 2 3

( ) ( ) ( ) ( )( )g g g g
ii r r rFν = Θ + Θ − Θ

DE/best/2: 

1 2 3 4

( ) ( ) ( ) ( ) ( ) ( )( ) ( )g g g g g g
i ii best r r r rF Fν = Θ + Θ − Θ + Θ − Θ

DE/current-to-best/1:

 
1 2

( ) ( ) ( ) ( ) ( ) ( )( ) ( )g g g g g g
i ii i ibest r rF Fν = Θ + Θ − Θ + Θ − Θ

either-or: this strategy merges two methods to gene-
rate the donor vector [26].

 1 2 3

1 2 1 3 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

[0, 1],

[0, 1]

  

 / /1: ( )

 / /2: 

( )

 

f

f

g g g g
ii r r r

g g g g g g
i r r r r r

p mutation probability

a random number

if a p then

use DE rand F

else

use DE rand

end if

← ∈

← ∈
<

ν = Θ + Θ − Θ

ν = Θ + Κ Θ − Θ + Θ − Θ

Where, Fi is the scaling factor within 0 and 1, in-
dices r1, r2, r3 and r4 are randomly selected integers 
from the range [1, NP], such that r1 ≠ r2 ≠ r3 ≠ i.

( )g
bestΘ  is the best individual in the current popula-

tion, also pf and a are the mutation probability and 
random number, respectively. At that point, a cross-
over between ( )g

iν  and ( )g
iΘ  is performed to ge-

nerate a trial vector ( ) ( ) ( ) ( )
,1 ,2 ,6( , ,..., ),g g g g

i i i iu = μ μ μ  two 
methods were used in this paper, A binomial and 
Exponential crossover procedures [8]. The binomial 
crossover provides a trial vector by selecting an ele-
ment from the donor vector whenever a randomly 
produced value formed from a uniform distribution 
is below the crossover rate Cr   . Additionally, an ele-
ment h is randomly taken per iteration to always 
come from a donor vector as follows:

 
( )
,( )

, ( )
,

(0, 1) ,

.

g
ri jg

i j g
i j

if i h or rand C

otherwise

⎧υ =⎪μ = ⎨
θ⎪⎩

m

Exponential crossover tries to exploit relation-
ships between adjacent elements. It works by choo-
sing a random starting element and selecting the 

next L consecutive elements in a circular manner 
from the donor vector. The number of elements L is 
calculated as follows:

Algorithm 2: Exponential crossover

0

0

(0,1) r

L

repeat

L

until rand C or L D

←

←
> >

After crossover, the objective function as ex-
plained in Eq. 1 is evaluated for the trial vector ( )g

iu .
According to the greedy selection only, as shown in 
algorithm 1. Afterward, the better of ( )g

iu  and ( )g
iΘ  

will be picked to remain into the next generation.

4.2. Modified Shuffled Frog-Leaping Algorithm

The shuffled frog-leaping algorithm (SFLA) 
was developed by Eusuff and Lansey in 2003 [21]. 
It is a member of the Memetic algorithm family,
a particular kind of a meta-heuristic optimization 
approach and a type of evolutionary algorithms 
which based on population. It is inspired by the 
memetic evolution of frogs exploring food in a lake, 
which consolidates the benefits of the genetic-based 
MA and the social behavior-based particle swarm 
optimization [21]. In general, the SFLA incorpo-
rates two alternating processes: a local exploration 
in the sub-memeplex and global information ex-
change among all memeplexes.

The optimization achievement of the SFLA ba-
sically relies on two facts, the first one is the evo-
lution process on each memeplex which embraces 
different cultures of frogs, this culture stimulates 
fitness values and the evolution process serves as 
a local search within memeplex analogous to PSO 
algorithm which imitates the social behavior of the 
leaping action of frogs searching for food. Addition-
ally, the extra fact is an idea held within each frog 
which can be influenced by the ideas of other frogs 
from other memeplexes throughout the shuffling 
rule, this animates the cooperation process which 
it implies an adaptation idea and improves the suc-
cess rate of discovering the solution in optimization 
puzzle. In this process, a modification was applied 
to the frog-leaping action that it enhances the ex-
ploration manner in the space [22], [23]. Moreover, 
the randomization strategy in the evolution process 
proffers the algorithm the ability to discover the 
local best solution within search space stochasti-
cally in addition to the communication process that 
possibly finds a global optimum solution in shorter 
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time. The local search and the shuffling processes 
continue until defined convergence criteria are sa-
tisfied. The pseudocode of the algorithm was pre-
sented in Algorithm 3.

Algorithm 3: The pseudo-code
of the Shuffled Frog-Leaping Algorithm

Initialization:
Population ← {Θ1, Θ2, ..., Θi, ..., ΘNP};
m ← number of memeplexes;
n ← quantity of frogs in each memeplex;
l ← 1, iN
while (convergence criteria is satisfied Or ubtil met iN) do

Rank Step: Evaluate each frog Θi using a fitness func-
tion;
Partition Step:
Construct an array U of frogs and their fitness’s values;
Sort the array U in descending order based on the fit-
ness column;
Construct (Y  k; k = 1, ..., m) memeplexes each including  
n frogs;
Evaluation Step:
for l ← 1, iM do

for k ← 1, m do
Determine the worst and best frogs based on their 
fitness’s values;
Improve the worst frog position using a leaping dis-
tance;
end for

end for
Shuffle Memeplexes Step: combine the evolved meme-
plexes;
Check Convergence: Update the population best frog’s 
position Θg;

1;l l← +
end while

The MSFLA meta-heuristic strategy is summa-
rized in the following steps:

a. Initialization step, construct the population 
NP of frogs randomly similar to the first step in 
DE algorithm, then Select m, and n, where m is the 
number of memeplexes and n is the number of frogs 
in each memeplex. Therefore, the total amount of 
frogs NP can be calculated as NP = mn, addition-
ally, the i-th frog is expressed as a vector with the 
dimension is equal to the configuration space as 
follows ,1 ,2 ,6( , ,..., ); 1, 2,..., .i i i i i NPΘ = θ θ θ =

b. Rank step, compute the performance value fi 
for each frog Θi. Sort the NP frogs in a descending
order according to their fitness. Save them in an ar-
ray U = {fi, Θi; i = 1, 2, ..., NP}, so that i = 1 de-
notes the frog with the best performance value and 
could save it as a Θg in each iteration while algorithm
running.

c. Partition Step, partition array U into m meme-
plexes Y1, Y2, ..., Ym, each including n frogs, such 

that ( ( 1)) ( ( 1))[ , | , ,k k k k k
i i i k m i i k m iY f f f+ − + −= Θ Θ = Θ =  

1,..., ]; 1,...,i n k m= = . In this process, the first 
frog goes to the first memeplex, the second frog 
goes to the second memeplex, frog m goes to the 
m-th memeplex, and frog m + 1 goes back to the 
first memeplex, etc.

d. Memetic Evaluation step, evolve each meme-
plex Y  k; k = 1, ..., m according to the frog-leaping 
algorithm as follow. Within each memeplex, the 
frogs with the best and the worst fitness values are 
defined as Θb and Θw, respectively. Furthermore, 
the frog with the global best fitness is defined as Θg. 
Next, an improvement process is applied to only the 
frog with the worst fitness in each cycle. Hence, the 
position of the frog with the worst fitness is modi-
fied which emulates the leaping process as follows: 
leaping distance D = CLrand(0, 1)[Θb – Θw], then 
new position Θw = Θw + D; D ∈ ]–Dmax, Dmax[. 
Where, rand(0, 1) is a random number between 0 
and 1, Dmax is the maximum allowed change in a 
frog’s position and CL is the modification of the al-
gorithm which it is a constant indicates the amount 
of frog-leaping in each memeplex. The evaluation 
process for all memeplexes is repeated by an adapt-
able number of iterations called iM until no im-
provement becomes possible.

e. Shuffle Memeplexes Step, shuffle frogs and 
replace all memeplexes Y  k; k = 1, ..., m into U, such 
that U = { fi, Θi; i = 1, 2, ..., NP} similar to initia-
lization phase, afterward sort U in order of decrea-
sing performance value, Update the population best 
frog’s position Θg .

f. Check the convergence criteria if satisfied 
then stop otherwise return to the partition step and 
continue for a specific quantity of iterations which 
called iN, finally after each ite ration the first frog 
in the sorted list represents a global solution. The 
number of iteration iM specifies the depth of search 
within memeplexes while the iN governs the solu-
tion producing process.

5. Simulation Results and Discussions

In this work, we solve inverse kinematics of the 
redundant manipulator with six joints to follow a des-
tination pose. The manipulator’s joints correspond to 
the variable θj, J = 1, 2, ..., 6 had been constrained by 
a Table 2. The DH table is presented in Table 3. In 
the inverse kinematics experiments, the desired end-
effector pose for the arm-part of the manipulator was 
determined as a variable G = (PG, OG) = (x, y, z, roll, 
pitch, yaw) = (–20, 3, 40, 0, 10, 15). Moreover, the 
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Table 5

Inverse Kinematics Results of Differential Evolution Algorithm

Test 
No.

Popu-
lation

Itera-
tions

J(Θ) Total Error
Execution 
Time [ms]

Reaching Target (x, y, z, roll, pitch, yaw)

1 6 250 4.60464 –8.22166 247 (–20.0619, 3.00659, 40.0358, 3.74, –4.49369, 17.5544) 

2 6 500 1.53162 1.78975 594 (–19.56, 2.64638, 39.8767, 0.465805, 13.2258, 13.135) 

3 8 600 1.19735e–5 8.26589e–6 861 (–20, 3, 40, –8.25797e–6, 10, 15) 

4 8 800 3.60207e–7 6.13326e–7 1125 (–20, 3, 40, 2.59552e–8, 10, 15) 

5 10 500 0.000230295 0.000677389 986 (–19.99, 3.0001, 40.00001, 4.21087e–5, 10.004, 15) 

6 10 750 1.55363e–7 1.13202e–7 1301 (–20, 3, 40, 1.13202e–7, 10, 15) 

7 10 1000 4.53651e–9 –3.13365e–9 1917 (–20, 3, 40, –1.40416e–9, 10, 15) 

8 12 250 0.22408 –0.001729 567 (–19.8094, 3.06099, 40.1352, 0.0528143, 10.1526, 15.087) 

9 12 400 0.0004035 0.000107144 835 (–20.0001, 3.00003, 40, –0.0006738, 9.999932, 14.9998) 

10 12 500 3.42549e–5 0.000107144 1146 (–20, 3, 4, 3.25415e–5, 10, 15) 

11 20 500 0.000828201 0.00156291 1736 (–19.9994, 3.00002, 40.0002, 0.000503176, 10.0009, 14.999) 

12 20 750 1.28825e–6 –4.33271e–6 2628 (–20, 3, 40, –3.29831e–6, 10, 15) 

13 30 500 0.00107932 –0.00085163 2614 (–20.0004, 2.99975, 39.999, 0.000577463, 9.999, 15.0007) 

14 30 1000 9.20132e–7 3.09732e–8 5255 (–20, 3, 40, 3.978432e–8, 10, 15)

Table 4

Setting of the DE Algorithm

Mutation Method Random

Scale Factor 0.9

Crossover Method Uniform

Crossover Probability 0.95

parameters of the objective function were adjusted 
as follows ε = 1 – β = 0.7 so there is a balance be-
tween position and orientation to be optimized. In 
case of DE algorithm, Table 4 shows DE settings 
while Table 5 presents the results of utilizing DE 
for some scenarios.

As presented in Table 6, it is obvious that the ex-
ecution time depends on the size of the population 
and the iterations, respectively. Further, the popu-
lation size achieves the diversity feature which let 
the algorithm explores more solutions in the work-
space while the high iteration gives a solution much 
closer to the target. Hereafter, a Fig. 2 presents the 
values of the objective function, while the Fig. 4 
and Fig. 5 illustrate the position and orientation of 
end-effector for the manipulator after applying the 
solutions to validate IK solver. Forthwith, the Fig. 3
(see the 3rd side of cover) demonstrates the con-
figuration joints for reaching the setpoint G, which 
shows multiple solutions after each new iteration be-

Fig. 2. Displays the values of the objective function after applying 
IK-DE solver

Fig. 4. Illustrates the position of end-effector for the manipulator 
after applying the solutions to validate IK-DE solver
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cause of the redundant nature of our manipulator, 
in addition, each new solution is considered as a 
global solution within its iteration, new high itera-
tion grants algorithm an ability to explore a new 
global solution. therefore, it’s important to alter the 
settings of DE to conclude one solution based on 
the objective function in shorter time.

By analyzing the results in the Table 5 and Fig. 3,
it was explicit that the test number 9 is the proper 
solution with a convergence time equal to 835 ms 
and a total error equal to –0.001729 taking into 
consideration that the adaptation of DE parameters 
nearby setting of this result may improve the solu-
tion to be more fitting but longer convergence time.

In case of MSFLA, the parameters of the algo-
rithm were introduced in the Table 6 additionally, 
the summary of the results of utilizing the algo-
rithm for multiple scenarios was represented in the 
Table 7.

As presented in the results, the amounts of execu-
tion time are longer than those in the experimental 
results of DE algorithm. The population of the DE 
algorithm is created randomly and the size of the 
population should be selected based on the problem 
and dimension of the workspace in order to cover all 
the space and consequently obtain the global solution 
quickly. Besides, the maximum number of iteration 
depends on the accuracy required on the problem.

Table 6

Setting of the MSFL Algorithm

m Number of memeplexes 3

n Number of frogs within memeplexes NP/m

CL Amount of Leaping 1.3

Table 7

Inverse Kinematics Results of MSFL Algorithm

Tests Popula tion
Iterations

J(Θ) Total Error
Execution 
Time [ms]

Reaching Target (x, y, z, roll, pitch, yaw)
iN iM

1 20 30 10 11.618 29.7156 729 (–15.7365, 5.43, 52.57, 6.63, 12.66, 16.164) 

2 30 30 10 7.6614 12.0878 1045 (–21.1832, 2.91528, 50.77, –0.201742.10.0158, 14.8583) 

3 40 30 15 10.5382 19.2097 1685 (–25.08, 8.56, 46.818, –6.2, 9.6, 5.4251) 

4 40 40 30 18.4625 18.4625 4526 (–25.2365, 8.34134, 47.591, –2.537.8.6258.14.1301) 

5 60 40 30 8.2925 8.2925 6645 (–24.4625, 0.04208, 44.589, 1.655, 11.1161, 14.054) 

6 80 50 40 11.0236 11.0236 13 540 (–26.9977, 3.59399, 42.871, –0.0686, 9.816, 15.6762) 

7 100 60 60 29.7744 29.7744 24 191 (–20.0331, 30.03867, 39.9706, –7.709, 3.6786, –0.7192) 

8 130 70 60 0.151062 0.648529 46 282 (–20.09, 2.988, 40.004, 0.20727, 9.642, 14.894) 

9 170 60 50 0.616846 2.16791 40 459 (–20.1505, 2.8357, 40.0911, 0.8872, 10.3554, 16.149) 

10 200 90 40 0.113833 0.297961 57 362 (–19.9268, 3.00718, 39.98, –0.1344, 10.1049, 14.894) 

11 200 100 60 0.0728863 0.378871 92 779 (–20.0018, 2.99737, 39.9906, –0.13745, 10.1506,14.9178) 

12 200 120 80 2.76717 5.81648 150 246 (–20.4796, 4.15287, 40.4894, 0.80744, 4.08227, 13.7867) 

13 200 200 100 2.67129 1.93396 318 481 (–19.2649, 2.23482, 41.9365, –0.978994, 10.8776, 11.4859) 

14 250 90 40 0.003134 0.0165418 69 818 (–19.9995, 3.00023, 39.9998, 0.00495, 10.0061, 14.995) 

15 250 140 80 1.26635 6.55357 215 027 (–20, 3, 10, –7.01976e–10, 10, 15) 

16 250 140 100 4.64762e-9 1.05135e-8 260 325 (–20.0982, 2.9671, 40.0008, –1.68742, 6.68997, 13.5741) 

17 300 140 80 1.01476e-9 3.3374e-9 255 989 (–20, 3, 40, 1.16487e–9, 10, 15) 

18 500 90 40 5.4912e-10 9.9601e-10 136 888 (–20, 3, 40, –1.66261e–11, 10, 15) 

19 500 200 100 3.02894e-15 1.5664e-14 68 1646 (–20, 3, 40, 3.22962e–15, 10, 15)

20 1000 30 45 0.0968137 0.0255 95197 (–20.0305, 3.0454, 40.0451, –0.0037, 10.957, 14.8752)

Fig. 5. Illustrates the orientation of end-effector for the manipulator 
after applying the solutions to validate IK-DE solver
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Hereafter, the Fig. 6 displays the values of the 
objective function, while the Fig. 7 and Fig. 8 (see 
the 3rd side of cover) represent the position and ori-
entation of end-effector for the manipulator after 
applying the solutions to validate IK solver. Forth-
with, the Fig. 9 (see the 3rd side of cover) shows the 
configuration joints for reaching the setpoint G.

6. Conclusion

The design and kinematics of a human-size aerial 
manipulation robot have been introduced. this de-
sign has been separated into two parts: arm-part 
and hand part in order to be easier in the naviga-
tion process and control system. the purpose of this 
study is to observe a perception of actuating the 
manipulator so fast; to reach a target point in the 
3D workspace, robotically investigate a kinematics 
solution. therefore, in this paper, we have presented 
a methodology to solve the inverse kinematics of 
a 6-DOF lightweight manipulator based on evolu-
tionary algorithms. Furthermore, the metaheuristic 
algorithms included in the simulations were the dif-
ferential evolution (DE) and modified shuffled frog-
leaping (MSFL). These algorithms were designated 
as multi-objective, multi-dimensional, stochastic 
and diversity methods. The simulation and experi-
ments were conducted to prove the effectiveness of 
each approach. Consequently, the DE had the best 
performance over SFLA with the high success rate 
and the fast convergence as well, the simulation was 

carried out through PC with following specifica-
tions (Core i7, Q740, 1.73GHz). Subsequently, all 
the optimization techniques of population-based 
algorithms depend on the concept of generating a 
population randomly then relocate or migrate indi-
viduals in the space to obtain the local/global solu-
tion. besides, it is not arduous to promote those two 
algorithms and proffer them an adaptive feature as 
we fulfilled with MSFLA in this research to deliver 
more stabilization plus little run-time. Finally, the 
aim of this study was acknowledged as one from
multiple objectives of our project, which are control-
ling the aerial manipulator integrated into an aerial 
vehicle, in the space additionally, studying of the dis-
turbances effects on the vehicle and stabilizing the 
motion of the manipulator.
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