ANHAMUKA, BATUTIUCTUKA U YTNIPABJIEHUE
B ABUAKOCMUYECKUX CUCTEMAX

YK 531.3 DOI: 10.17587/mau.19.658-663

A New Method of Integrating the Equations of Autonomous Strapdown INS

Ya. G. Sapunkov, Ph. D., Senior Researcher,
Yu. N. Chelnokov, Doctor of Physical and Mathematical Sciences, Chief Researcher,
A. V. Molodenkov, Ph. D., Senior Researcher, iptmuran@san.ru,
Precision Mechanics and Control Problems Institute, RAS, Saratov, 410028, Russian Federation

Corresponding author: Molodenkov Aleksey V., Ph. D., Senior Researcher, Laboratory of Mechanics,
Navigation and Motion Control, Precision Mechanics and Control Problems Institute, RAS,
Saratov, 410028, Russian Federation, e-mail: iptmuran@san.ru

Accepted July 03, 2018

We propose the new version of separating the process of integrating the differential equations, which describe the functioning of the
strapdown inertial navigation system (SINS) in the normal geographic coordinate system (NGCS), into rapid and slow cycles. In this
version, the vector of the relative velocity of an object is represented as a sum of a rapidly changing component and a slowly changing
component. The equation for the rapidly changing component of the relative velocity includes the vectors of angular velocities of the
Earth’s rotation, NGCS rotation, and, at the same time, the vectors of the apparent acceleration and gravity acceleration, because
these accelerations partially balance each other, and at rest relative to the Earth are balanced completely. The equation of the slowly
changing component of the relative velocity includes only the vector of angular velocity of the Earth’s rotation and the vector of NGCS
rotation. The quaternion orientation of an object relative to the NGCS is represented as a product of two quaternions: a rapidly
changing one, which is determined by the absolute angular velocity of an object, and slowly changing one, which is determined by
the angular velocity of the NGCS. The right parts of the equations for each group of variables depend on the rapidly changing and
slowly changing variables. In order to enable the independent integration of the slow and rapid cycle equations, the algorithm have
been developed for integrating the equations using the predictor and corrector for the cases of instantaneous and integral information
generated by SINS sensors. At each predictor step the Euler method is used to estimate the longitude, latitude and altitude of an
object, slowly changing component of the relative velocity, and slowly changing multiplier of the orientation quaternion at the rightmost
point of the slow cycle. Then the Euler-Cauchy method is used to integrate the equations for the rapidly changing components on the
rapid cycle intervals, which are present in the slow cycle. The necessary values of the slowly changing components in the intermediate
points are calculated using the formulas of linear interpolation. After the rapidly changing components are estimated at the rightmost
point of the slow cycle, at the corrector step the Euler- Cauchy method is used to refine the values of the slowly changing components
at the rightmost point of the slow cycle. Note that at the beginning of each slow cycle step the slowly changing component of velocity
is equal to the value of the relative velocity of an object, and the rapidly changing component is zero. Similarly, at the beginning of
each slow cycle step the slowly changing multiplier of object’s orientation quaternion equals to the quaternion of orientation of an
object relative to the NGCS, and the rapidly changing multiplier of the orientation of an object has its scalar part equal to one, and
its vector part equal to zero (this formula is derived from the quaternion formula for adding the finite rotations). SINS on a stationary
base had been simulated in the presence of perturbations for a large time interval for a diving object, which drastically changes its
height over short time periods.

Keywords: relative velocity, latitude, longitude, altitude, orientation quaternion, rapid and slow loops, strapdown INS, normal
geographic frame, Fuler — Cauchy method

Introduction

Inertial navigation differential equations contain
rapidly changing and slowly changing variables and
coefficients of equations. Therefore, to improve the
accuracy of the numerical integration of these equa-
tions, it is useful to separate the process of integra-
ting the equations relative to rapid and slow variables.

This paper considers rapid and slow loops of al-
gorithms of strapdown INS orientation and naviga-

tion that implement separate integration of rapid
and slow angular motions of an object and NGCS
on an on-board computer, as well as rapid and slow
components of the relative (to the Earth’s surface)
velocity of an object, according to the information
from the gyroscopes about the absolute angular
velocity of an object and from the accelerometers
about its apparent acceleration.

The algorithm for determining the orientation
of an object with respect to NGCS can be con-
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structed either on the basis of a single differential
quaternion equation of the relative angular motion
of an object containing the projections of absolute
angular velocities for both an object and NGCS,
which differ by several orders of magnitude, or on
the basis of two differential quaternion equations of
absolute angular motions of an object and NGCS
using an additional quaternion algebraic relation.
Coefficients of the equation of absolute angular
motion of an object (projections of absolute angular
velocity of an object on the body-fixed coordinate
axes) are rapidly changing functions of time. Co-
efficients of equations of absolute angular motion
of NGCS (projections of absolute angular velocity
of NGCS on its own coordinate axes) are slowly
changing functions of time, and are by several or-
ders of magnitude smaller than the coefficients of
equations of absolute angular motion of an object.
However, despite the fundamental difference be-
tween instantaneous absolute angular motions of an
object and NGCS, their integration using the qua-
ternion equation of relative angular motion of an
object is carried out by the same numerical method
(since these equations simultaneously cover instan-
taneous absolute angular motion of an object and
instantaneous absolute angular motion of NGCS).
When the single equation of relative angular mo-
tion of an object is replaced by the combination
of two equations of absolute angular motion of an
object and NGCS, a natural separation of angular
motions into rapid absolute angular motion of an
object and slow absolute angular motion of NGCS
occurs. Therefore, when using these two equations,
separate integration of instantaneous rapid and slow
motions is performed, for which different numerical
methods of integration can be used. In this case,
the accuracy of integration of instantaneous abso-
lute angular motion of an object will not be affected
by instrumental errors of accelerometers, as in the
integration of equation of relative angular motion
of an object. Therefore, we propose to integrate the
rapid absolute angular motion of an object in an
inertial coordinate system in the rapid loop, to inte-
grate the slow angular motion of NGCS in the same
coordinate system in the slow loop, and then, using
the quaternion formula for adding the finite rota-
tions of an object and NGCS, calculate the quater-
nion of orientation of an object’s relative to NGCS.
The relative velocity of a moving object (relative
to the Earth’s surface) also contains rapid and slow
components. Therefore, we propose to replace the
vector differential equation for the relative velocity
by the set of two equations describing these compo-

nents. The equation for rapidly varying component
of relative velocity of an object contains the vec-
tor sum of apparent acceleration and acceleration
of gravity, which partially balance each other out,
and completely balance each other out in the state
of relative rest of an object (relative to the Earth).
The equation for slowly varying component of the
relative velocity of an object does not contain these
accelerations, but contains only small angular ve-
locities of the Earth and NGCS.

In this article we propose a new version of sepa-
rating the process of integrating the differential
equations, describing strapdown INS operation in
NGCS. This version is suitable for implementing
our proposed method of integrating the equations
of inertial orientation and navigation using the
predictor-corrector method and the Euler—Cauchy
method, which, as shown in the article, gives high
accuracy of numerical integration of the equations
of orientation and navigation.

It should be noted that the separation of the pro-
cess of integrating the strapdown INS equations of
navigation and orientation into rapid and slow loops
is discussed in papers [1, 2]. In these papers it was
proposed to use the superposition principle to sepa-
rate the integration of the rapidly changing appa-
rent acceleration and slowly changing gravitational
acceleration of a moving object and the representa-
tion of the absolute velocity of an object in the form
of a vector sum of the apparent and gravitational
velocities. In contrast to these papers, we propose
the new way of separating the process of integration
of inertial navigation equations for relative velocity
vector projections of an object, and also we dem-
onstrate the efficiency of the proposed process of
integration of navigation and orientation of strap-
down INS equations using a new algorithm that
implements the predictor-corrector method and the
Euler—Cauchy method.

1. Equations of rapid and slow loops

The relative velocity v of an object is determined
by the differential equation [3]

dvidt=a—u+ Q,v] + g, (1.1)

where a is the apparent acceleration vector of an
object, u is the angular velocity vector of the Earth’s
daily rotation, Q is the angular velocity vector
of NGCS’s rotation, g is the gravity acceleration
vector, "[..., ...]" stands for vector product of the
vectors indicated in parentheses.
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The orientation of an object in NGCS is deter-
mined by the quaternion v, which satisfies the dif-
ferential equation [3]

2dvidt=v oo —Qov, (1.2)

where o is the vector of the absolute angular velocity
of an object’s rotation, ° is the symbol of quaternion
product.

In order to separate the process of integration of
the equations of strapdown INS, it is convenient to
represent the relative velocity vector and the orien-
tation quaternion in the form

(1.3)

V=v,+V, v=Kos,

where tilde (~) means quaternion conjugate.

The angular velocities u, Q are small and repre-
sent slow rotation. Rapidly changing component of
velocity v, and slowly changing component of velo-
city v, satisfy the equations:

dvjdt=a—[ut+Q,v)] + g, (1.4)

dv,/dt = —u + Q, v,]. (1.5)

Rapidly changing quaternion s (the quaternion
of an object’s inertial orientation) and slowly chan-
ging quaternion k (the quaternion of the NGCS’s
inertial orientation) satisfy the equations:

2ds/dt = s ° o, (1.6)

2dk/dt =k ° Q. (1.7)

Equations of the rapid loop, which use the rea-
dings of strapdown INS sensors, define the rapid-
ly changing component of velocity v, and of the
quaternion s, and are represented by the system of
equations (1.4) and (1.6). Both vectors a and g are
included in the equation (1.4) because they partially
balance each other out, and in the state of a relative
rest of an object they totally cancel each other out.

The equations of the slow loop (1.5) and (1.7) de-
termine the component of velocity v, and the qua-
ternion k. The equations for longitude A, latitude ¢
and altitude H of an object, projected on the NGCS
axes, are also included in this system:

@_VaE“‘VbE ﬂ_VaN + VN

dt Rcose ' dt R, (L.8)
dH v,y +Vvpy ’
dt K '

Vector equations (1.4), (1.5) are projected onto
the axes of the NGCS for numerical integration.

The components of vectors Q, u, and the functions
R, R,, K, g are defined by the formulas (1.9) and
(1.10), where A is the semi-major axis of Earth el-
lipsoid of rotation, and e? is the square of the first
eccentricity:

Qy =uy +2ETVE o =y, g YaE TVBE o
R, Ry
QE:_%M,uN:ucoscp,uH:usimpg (1.9)
2
A+ H A+ H)(1-e?
R]:_K :R2:#§);
K
K =(1-e?sin? ¢)2,
A? 2
= ————(1+3sin” ¢'), 1.10
g gaO(A+H)2( ¢ (1.10)
N2 a2
sin? ¢ = d-ef) sin ¢

1-(2e* —e*)sin’ ¢’

2. Algorithm for integrating the differential
equations of rapid and slow loops

The period of object’s motion time is divided
into intervals [z, , + ], (m =1, 2, ..., my) which
are equal to Arz. These are the intervals of the slow
loop. Each one of the slow loop intervals is divided
into n intervals of the rapid loop, which are equal
to 8t = At/n:

[tmO’ tmlla [tml’ th]’ (] [tmn— 1> tmn]s tmO = tm:
to=t Q.1)

mn m+ 1

The strapdown INS sensors readings are taken at
these intervals.

At the leftmost point of the slow loop interval
t = t, there are the initial conditions for position,

velocity and orientation of an object:
A=A . = 5 H = H )
v, ZO,Vb ZVmo,Szl, kzvmo.

First, the predictor step for the slow loop is per-
formed according to the Euler method in equations
(1.5), (1.7), (1.8), as follows:

Y Em0
leO COS Py

A 27\.”104‘ At,

m+1

1%
Pyl = Pmo + RNmO tgp A,
2m0

v

Hiyy = Hyo + 2220 A1, (2.3)
m0Q

Vom+l = Vmo — [u+ Q’v]mOAta

l(m+1 = ‘NlmO + ‘NlmO © 32m0 At/z'
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Next, during integration of the equations (1.4),
(1.6) on the intervals of the rapid loop according
to the linear interpolation formulas, the values ¢,
H, v;, k, g, u are computed at time points 7 = 1,
which divide the slow loop interval into rapid loop

intervals, in particular

(pmj = Qo + P l’l_ Dm0 ja

2.4)
Vomi = Vmo +vb’"+lnﬂj,j:0, 1, ....,n—1.

Equations (1.4), (1.6) are integrated by the
Euler—Cauchy method with the initial conditions
(2.2), taking (2.4) into account, on each rapid loop
time interval which lies inside the slow loop inter-
val. During the integration of equation (1.4), the
following actions are performed:

pl = (amj - [umj + Qmj 9vamj ]+ gmj)Sta
Py = (amj+l - [umj+1 + Qij’vamj +pil+ gmj+l)6t’ 2.5

Vamjs1 = Vami + (01 +P2)/2, =0, 1, ...,n-1.

During the integration of equation (1.6), similar
steps are performed:

Q) =S, °®,,01/2, q; =(S,; +q) c®,,;,,31/2,

2.6
Smist =Sm +(q1+42)/2, j=0, 1, ...,n—1. (2.6)

During the integration of equation (1.4) it is
taken into account that the projections of the ap-
parent acceleration vector on the axes of the NGCS
depend on the components of quaternions k and s,
i.e., equations (1.4) and (1.6) are treated as a single
system of equations.

After the values of vector v, and quaternion s at
the rightmost point of the time interval [z, 7, + ]
of the slow loop for the system of equations (1.5),
(1.7), (1.8) are obtained, the corrector step is per-
formed on the slow loop interval using the Euler—
Cauchy method with the obtained value of vector v,
at the rightmost point of the slow loop interval. As
a result, the position of an object, the slowly va-
rying component of velocity v, and the slowly vary-
ing quaternion k are refined at the rightmost point
of the slow loop interval. The relative velocity vec-
tor and the orientation quaternion of an object are
estimated according to the formulas (1.3). As a re-
sult, position, velocity and orientation of an object
at the rightmost point of the slow loop interval are
estimated, which then serve as initial conditions,
according to (2.2), for the next slow loop interval.

Formulas (2.5) and (2.6) for the numerical inte-
gration of equations (1.4) and (1.6) by the Euler—
Cauchy method on the rapid loop time interval
(24> twj + 1] are presented for the case when strap-
down INS sensors provide instant information
about the projections of the apparent acceleration
and the absolute angular velocity of an object onto
the body-fixed axes. If strapdown INS sensors pro-
vide the integral information using the quadratic
interpolation method, it is possible to obtain instant
information about the projections of the apparent
acceleration and the absolute angular velocity on
the body-fixed axes.

3. Results of strapdown INS simulation
using separation of the integration process
of the equations of navigation and orientation
into rapid and slow loops

Software have been developed for calculating
the speed, position and orientation of an object
from strapdown INS sensors information, using the
separation of the variables into rapidly and slowly
varying variables, and the separation of the process
of numerical integration of strapdown INS equa-
tions into rapid and slow loops. Calculations were
performed for the case when the position, initial
velocity and orientation of an object at the initial
moment of time were determined by the following
parameters:

Lo =46.0deg, ¢, =51.5deg,
H, =100.0m, Vy,=0.0m/s,
Vio=0.0m/s,Vgy=0.0m/s,
Voo =1, vig =0, vy =0, v35 =0.

3.1)

Exact values of the projections of the apparent
acceleration and the absolute angular velocity of an
object on the body-fixed coordinate axes are esti-
mates by the formulas:

Alexact = 0, Aexact = g(HO: (PO)’

A3exact = 0, Ojexact = UCOSQy, (32)

®)exact = USINPg, D3exact = 0.

The rapid loop equations have been integrated
with the time step of 0.001 s. Strapdown INS sen-
sors data was retrieved with the same time steps.
The slow loop equations have been integrated with
the time step of 0.01 s on predictor step and cor-
rector step.
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The integration of the equations, which model
the strapdown INS, with the initial conditions (3.1),
if the apparent acceleration and absolute speed are
determined by the relations (3.2), should be per-
formed for a fixed object. The calculations per-
formed by the developed software for the period of
1 hour with the above-mentioned steps of rapid and
slow loops have shown the following errors:

AL <1078 deg, Ap <1078 deg,

AH =8.42-107m,

AVy <108m/s, AV =1.5-10"m/s,
AVp =1-10"m/s,|Av] <1-107%,

(3.3)

Calculations have also been performed for the
same initial conditions (3.1) for the case when pe-
riodic perturbations are added to the exact values
of the projections of the apparent acceleration and
absolute angular velocity (3.2):

A; = G;opqer + Aasin(2uNt +0.5(2 - i)),

i = w[exact + A(DSil’l(zTENt _0.5(2 - i)),
i=1,2,3.

In the formulas (3.4) N is the disturbance fre-
quency; Aa, Ao are the amplitudes of acceleration
and angular velocity disturbances respectively. The
calculations have been performed for two frequen-
cies: N =50 Hz and N = 250 Hz, with the distur-
bance amplitudes of Aa = 10_3g0, Aw = 0.1deg/hour
(g 1s the gravity acceleration at the equator at the
Earth’s surface). As a result of integrating strap-
down INS equations for 1 hour time interval, the
following errors have been obtained.

Variant 1:

N =250 Hz, Aa =107 g, Ao = 0.1deg/hour,

i

(3.4)

(@)

Ak =2.58-10"%deg, Ap =1.553-107° deg,
AH =0,287m,

AVy =1.7810"*m/s, AV} =5.93-10"*m/s,
AVp =1.91-10"%m/s, |Av|=9.44-107>.

Variant 2:
N =50Hz, Aa = 10‘3g0, Ao =0.1deg /hour,

Ah=1.13-10"*deg, Ap =5.70-107° deg,
AH =28,37m,

AVy =6.72:1073m/s, AV =7.12-10m/s,
AVp =1.03-102m/s,|Av| =5.96-107,

For the latitude of 51.5°, the longitude of 1° cor-
responds to approximately 68.2 km, and 0.0001°
corresponds to approximately 6.82 m.

The strapdown INS have been simulated using the
separation of computation into rapid and slow loops
for an object, which dives along the parallel, i.e. at
the constant flight latitude of 51.5°, for a time period
of 178 s. Slow and rapid loop intervals were 0.01 s
and 0.001 s respectively. Columns two through five of
Table 3.1 represent the position and velocity data of
an object, obtained by integrating the strapdown INS
equations in the absence of strapdown INS sensor er-
rors. In order to estimate the accuracy, the sixth and
seventh columns represent longitude and altitude of
an object, according to the law of motion.

Table 3.1 shows that during the integration of
the strapdown INS equations using separation into
rapid and slow loops the error of estimating the al-
titude of an object had reached 0.3674 m at the final
moment of time. These errors have occurred be-
cause the law of motion of a diving object contains
acceleration discontinuities when transitioning from

Table 3.1
t,s A, ° H, m Vi, m/s Vi, m/s A, ° exact H, m exact
0.0 46.000000 8000.0000 200.0000 0.0000 46.000000 8000.0000
30.0 46.086297 8000.0000 200.0000 0.0000 46.086297 8000.0000
50.0 46.133297 6228.6880 141.3826 —141.4198 46.133296 6228.5978
70.0 46.173977 3394.4755 141.3195 —141.4198 46.173977 3394.3543
94.0 46.228807 1000.9453 198.4574 —3.7284 46.228806 1000.7404
110.0 46.268902 2002.0787 160.8796 94.2821 46.268898 2001.8203
130.0 46.315223 3891.5989 160.9272 94.2821 46.312217 3891.3160
150.0 46.366189 5000.3301 200.0105 0.0009 46.366180 5000.0000
178.0 46.446775 5000.3574 200.0105 0.0010 46.446761 5000.0000
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Table 3.2 shows the values of the longitude and
the altitude of an object, calculated while taking
into account the perturbations, at the final moment
of time at 178 seconds for different frequencies N
and different amplitudes of perturbation of the ac-
celeration Aa and the angular velocity Aw.

As it can be seen from Tables 3.1 and 3.2, the
perturbations with shown amplitudes have little ef-
sensors while measuring the apparent acceleration fect on the accuracy of calculations for the chosen
and the absolute angular velocity of an object, the scheme of separating the calculations into rapid and

one motion phase to another. As it can be seen in |
i
|
|
I
|
|
|
|
|
|
|
|
|
|
|
i
simulation had been conducted, in which perturba- | slow loops, given the short duration of the dive.
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|

the first two rows of the table, during the interval
of 0 to 30 s, when the object is moving horizontally
with constant velocity, and there are no accelera-
tion discontinuities, the altitude estimation errors
amounted to less than 0.0001 m.

In order to estimate the impact of perturbations
of the form (3.4) in the readings of strapdown INS

tions of the form (3.4) had been added to the appa-

rent acceleration and to the absolute angular velocity. References
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