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Introduction

Inertial navigation differential equations contain 
rapidly changing and slowly changing variables and 
coefficients of equations. Therefore, to improve the 
accuracy of the numerical integration of these equa-
tions, it is useful to separate the process of integra-
ting the equations relative to rapid and slow variables.

This paper considers rapid and slow loops of al-
gorithms of strapdown INS orientation and naviga-

tion that implement separate integration of rapid 
and slow angular motions of an object and NGCS 
on an on-board computer, as well as rapid and slow 
components of the relative (to the Earth’s surface) 
velocity of an object, according to the information 
from the gyroscopes about the absolute angular 
velocity of an object and from the accelerometers 
about its apparent acceleration.

The algorithm for determining the orientation 
of an object with respect to NGCS can be con-

ДИНАМИКА, БАЛЛИСТИКА И УПРАВЛЕНИЕ
В АВИАКОСМИЧЕСКИХ СИСТЕМАХ

We propose the new version of separating the process of integrating the differential equations, which describe the functioning of the 
strapdown inertial navigation system (SINS) in the normal geographic coordinate system (NGCS), into rapid and slow cycles. In this 
version, the vector of the relative velocity of an object is represented as a sum of a rapidly changing component and a slowly changing 
component. The equation for the rapidly changing component of the relative velocity includes the vectors of angular velocities of the 
Earth’s rotation, NGCS rotation, and, at the same time, the vectors of the apparent acceleration and gravity acceleration, because 
these accelerations partially balance each other, and at rest relative to the Earth are balanced completely. The equation of the slowly 
changing component of the relative velocity includes only the vector of angular velocity of the Earth’s rotation and the vector of NGCS 
rotation. The quaternion orientation of an object relative to the NGCS is represented as a product of two quaternions: a rapidly 
changing one, which is determined by the absolute angular velocity of an object, and slowly changing one, which is determined by 
the angular velocity of the NGCS. The right parts of the equations for each group of variables depend on the rapidly changing and 
slowly changing variables. In order to enable the independent integration of the slow and rapid cycle equations, the algorithm have 
been developed for integrating the equations using the predictor and corrector for the cases of instantaneous and integral information 
generated by SINS sensors. At each predictor step the Euler method is used to estimate the longitude, latitude and altitude of an 
object, slowly changing component of the relative velocity, and slowly changing multiplier of the orientation quaternion at the rightmost 
point of the slow cycle. Then the Euler-Cauchy method is used to integrate the equations for the rapidly changing components on the 
rapid cycle intervals, which are present in the slow cycle. The necessary values of the slowly changing components in the intermediate 
points are calculated using the formulas of linear interpolation. After the rapidly changing components are estimated at the rightmost 
point of the slow cycle, at the corrector step the Euler-Cauchy method is used to refine the values of the slowly changing components 
at the rightmost point of the slow cycle. Note that at the beginning of each slow cycle step the slowly changing component of velocity 
is equal to the value of the relative velocity of an object, and the rapidly changing component is zero. Similarly, at the beginning of 
each slow cycle step the slowly changing multiplier of object’s orientation quaternion equals to the quaternion of orientation of an 
object relative to the NGCS, and the rapidly changing multiplier of the orientation of an object has its scalar part equal to one, and 
its vector part equal to zero (this formula is derived from the quaternion formula for adding the finite rotations). SINS on a statio nary 
base had been simulated in the presence of perturbations for a large time interval for a diving object, which drastically changes its 
height over short time periods.

Кeywords: relative velocity, latitude, longitude, altitude, orientation quaternion, rapid and slow loops, strapdown INS, normal 
geographic frame, Euler — Cauchy method
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structed either on the basis of a single differential 
quaternion equation of the relative angular motion 
of an object containing the projections of absolute 
angular velocities for both an object and NGCS, 
which differ by several orders of magnitude, or on 
the basis of two differential quaternion equations of 
absolute angular motions of an object and NGCS 
using an additional quaternion algebraic relation. 
Coefficients of the equation of absolute angular 
motion of an object (projections of absolute angular 
velocity of an object on the body-fixed coordinate 
axes) are rapidly changing functions of time. Co-
efficients of equations of absolute angular motion 
of NGCS (projections of absolute angular velocity 
of NGCS on its own coordinate axes) are slowly 
changing functions of time, and are by several or-
ders of magnitude smaller than the coefficients of 
equations of absolute angular motion of an object. 
However, despite the fundamental difference be-
tween instantaneous absolute angular motions of an 
object and NGCS, their integration using the qua-
ternion equation of relative angular motion of an 
object is carried out by the same numerical method 
(since these equations simultaneously cover instan-
taneous absolute angular motion of an object and 
instantaneous absolute angular motion of NGCS).

When the single equation of relative angular mo-
tion of an object is replaced by the combination 
of two equations of absolute angular motion of an 
object and NGCS, a natural separation of angular 
motions into rapid absolute angular motion of an 
object and slow absolute angular motion of NGCS 
occurs. Therefore, when using these two equations, 
separate integration of instantaneous rapid and slow 
motions is performed, for which different numerical 
methods of integration can be used. In this case, 
the accuracy of integration of instantaneous abso-
lute angular motion of an object will not be affected 
by instrumental errors of accelerometers, as in the 
integration of equation of relative angular motion 
of an object. Therefore, we propose to integrate the 
rapid absolute angular motion of an object in an 
inertial coordinate system in the rapid loop, to inte-
grate the slow angular motion of NGCS in the same 
coordinate system in the slow loop, and then, using 
the quaternion formula for adding the finite rota-
tions of an object and NGCS, calculate the quater-
nion of orientation of an object’s relative to NGCS.

The relative velocity of a moving object (relative 
to the Earth’s surface) also contains rapid and slow 
components. Therefore, we propose to replace the 
vector differential equation for the relative velocity 
by the set of two equations describing these compo-

nents. The equation for rapidly varying component 
of relative velocity of an object contains the vec-
tor sum of apparent acceleration and acceleration 
of gravity, which partially balance each other out, 
and completely balance each other out in the state 
of relative rest of an object (relative to the Earth). 
The equation for slowly varying component of the 
relative velocity of an object does not contain these 
accelerations, but contains only small angular ve-
locities of the Earth and NGCS.

In this article we propose a new version of sepa-
rating the process of integrating the differential 
equations, describing strapdown INS operation in 
NGCS. This version is suitable for implementing 
our proposed method of integrating the equations 
of inertial orientation and navigation using the 
predictor-corrector method and the Euler—Cauchy 
method, which, as shown in the article, gives high 
accuracy of numerical integration of the equations 
of orientation and navigation.

It should be noted that the separation of the pro-
cess of integrating the strapdown INS equations of 
navigation and orientation into rapid and slow loops 
is discussed in papers [1, 2]. In these papers it was 
proposed to use the superposition principle to sepa-
rate the integration of the rapidly changing appa-
rent acceleration and slowly changing gravitational 
acceleration of a moving object and the representa-
tion of the absolute velocity of an object in the form 
of a vector sum of the apparent and gravitational 
velocities. In contrast to these papers, we propose 
the new way of separating the process of integration 
of inertial navigation equations for relative velocity 
vector projections of an object, and also we dem-
onstrate the efficiency of the proposed process of 
integration of navigation and orientation of strap-
down INS equations using a new algorithm that 
implements the predictor-corrector method and the 
Euler—Cauchy method.

1. Equations of rapid and slow loops

The relative velocity v of an object is determined 
by the differential equation [3]

 dv/dt = a – [u + W, v] + g, (1.1)

where а is the apparent acceleration vector of an 
object, u is the angular velocity vector of the Earth’s 
daily rotation, W is the angular velocity vector 
of NGCS’s rotation, g is the gravity acceleration 
vector, "[..., ...]" stands for vector product of the 
vectors indicated in parentheses.
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The orientation of an object in NGCS is deter-
mined by the quaternion n, which satisfies the dif-
ferential equation [3]

 2dn/dt = n é w – W é n, (1.2)

where w is the vector of the absolute angular velocity 
of an object’s rotation, é is the symbol of quaternion 
product.

In order to separate the process of integration of 
the equations of strapdown INS, it is convenient to 
represent the relative velocity vector and the orien-
tation quaternion in the form

 , ,a b= + =v v v k s� �n  (1.3)

where tilde (∼) means quaternion conjugate.
The angular velocities u, W are small and repre-

sent slow rotation. Rapidly changing component of 
velocity va and slowly changing component of velo-
city vb satisfy the equations:

 dva/dt = a – [u + W, va] + g, (1.4)

 dvb/dt = –[u + W, vb]. (1.5)

Rapidly changing quaternion s (the quaternion 
of an object’s inertial orientation) and slowly chan-
ging quaternion k (the quaternion of the NGCS’s 
inertial orientation) satisfy the equations:

 2ds/dt = s é w, (1.6)

 2dk/dt = k é W. (1.7)

Equations of the rapid loop, which use the rea-
dings of strapdown INS sensors, define the rapid-
ly changing component of velocity va and of the 
quaternion s, and are represented by the system of 
equations (1.4) and (1.6). Both vectors а and g are 
included in the equation (1.4) because they partially 
balance each other out, and in the state of a relative 
rest of an object they totally cancel each other out.

The equations of the slow loop (1.5) and (1.7) de-
termine the component of velocity vb and the qua-
ternion k. The equations for longitude λ, latitude ϕ 
and altitude H of an object, projected on the NGCS 
axes, are also included in this system:
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Vector equations (1.4), (1.5) are projected onto 
the axes of the NGCS for numerical integration. 

The components of vectors W, u, and the functions 
R1, R2, K, g are defined by the formulas (1.9) and 
(1.10), where А is the semi-major axis of Earth el-
lipsoid of rotation, and e2 is the square of the first 
eccentricity:
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2. Algorithm for integrating the differential 
equations of rapid and slow loops

The period of object’s motion time is divided 
into intervals [tm, tm + 1], (m = 1, 2, ..., mk) which 
are equal to Δt. These are the intervals of the slow 
loop. Each one of the slow loop intervals is divided 
into n intervals of the rapid loop, which are equal 
to δt = Δt/n:

 [tm0, tm1], [tm1, tm2], ..., [tmn – 1, tmn], tm0 = tm,
 tmn = tm + 1. (2.1)

The strapdown INS sensors readings are taken at 
these intervals.

At the leftmost point of the slow loop interval 
t = tm there are the initial conditions for position, 
velocity and orientation of an object:
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First, the predictor step for the slow loop is per-
formed according to the Euler method in equations 
(1.5), (1.7), (1.8), as follows:
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Next, during integration of the equations (1.4), 
(1.6) on the intervals of the rapid loop according 
to the linear interpolation formulas, the values ϕ, 
H, vb, k, g, u are computed at time points t = tmj, 
which divide the slow loop interval into rapid loop 
intervals, in particular
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Equations (1.4), (1.6) are integrated by the 
Euler—Cauchy method with the initial conditions 
(2.2), taking (2.4) into account, on each rapid loop 
time interval which lies inside the slow loop inter-
val. During the integration of equation (1.4), the 
following actions are performed:
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During the integration of equation (1.6), similar 
steps are performed:
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During the integration of equation (1.4) it is 
taken into account that the projections of the ap-
parent acceleration vector on the axes of the NGCS 
depend on the components of quaternions k and s, 
i.e., equations (1.4) and (1.6) are treated as a single 
system of equations.

After the values of vector va and quaternion s at 
the rightmost point of the time interval [tm, tm + 1] 
of the slow loop for the system of equations (1.5), 
(1.7), (1.8) are obtained, the corrector step is per-
formed on the slow loop interval using the Euler—
Cauchy method with the obtained value of vector va 
at the rightmost point of the slow loop interval. As
a result, the position of an object, the slowly va-
rying component of velocity vb and the slowly vary-
ing quaternion k are refined at the rightmost point 
of the slow loop interval. The relative velocity vec-
tor and the orientation quaternion of an object are 
estimated according to the formulas (1.3). As a re-
sult, position, velocity and orientation of an object 
at the rightmost point of the slow loop interval are 
estimated, which then serve as initial conditions, 
according to (2.2), for the next slow loop interval.

Formulas (2.5) and (2.6) for the numerical inte-
gration of equations (1.4) and (1.6) by the Euler—
Cauchy method on the rapid loop time interval
[tmj, tmj + 1] are presented for the case when strap-
down INS sensors provide instant information 
about the projections of the apparent acceleration 
and the absolute angular velocity of an object onto 
the body-fixed axes. If strapdown INS sensors pro-
vide the integral information using the quadratic 
interpolation method, it is possible to obtain instant 
information about the projections of the apparent 
acceleration and the absolute angular velocity on 
the body-fixed axes.

3. Results of strapdown INS simulation
using separation of the integration process

of the equations of navigation and orientation
into rapid and slow loops

Software have been developed for calculating 
the speed, position and orientation of an object 
from strapdown INS sensors information, using the 
separation of the variables into rapidly and slowly 
varying variables, and the separation of the process 
of numerical integration of strapdown INS equa-
tions into rapid and slow loops. Calculations were 
performed for the case when the position, initial 
velocity and orientation of an object at the initial 
moment of time were determined by the following 
parameters:
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Exact values of the projections of the apparent 
acceleration and the absolute angular velocity of an 
object on the body-fixed coordinate axes are esti-
mates by the formulas:
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The rapid loop equations have been integrated 
with the time step of 0.001 s. Strapdown INS sen-
sors data was retrieved with the same time steps. 
The slow loop equations have been integrated with 
the time step of 0.01 s on predictor step and cor-
rector step.
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The integration of the equations, which model 
the strapdown INS, with the initial conditions (3.1), 
if the apparent acceleration and absolute speed are 
determined by the relations (3.2), should be per-
formed for a fixed object. The calculations per-
formed by the developed software for the period of 
1 hour with the above-mentioned steps of rapid and 
slow loops have shown the following errors:
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Calculations have also been performed for the 
same initial conditions (3.1) for the case when pe-
riodic perturbations are added to the exact values 
of the projections of the apparent acceleration and 
absolute angular velocity (3.2):
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In the formulas (3.4) N is the disturbance fre-
quency; Δa, Δω are the amplitudes of acceleration 
and angular velocity disturbances respectively. The 
calculations have been performed for two frequen-
cies: N = 50 Hz and N = 250 Hz, with the distur-
bance amplitudes of Δa = 10–3g0, Δω = 0.1deg/hour 
(g0 is the gravity acceleration at the equator at the 
Earth’s surface). As a result of integrating strap-
down INS equations for 1 hour time interval, the 
following errors have been obtained.
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For the latitude of 51.5°, the longitude of 1° cor-
responds to approximately 68.2 km, and 0.0001° 
corresponds to approximately 6.82 m.

The strapdown INS have been simulated using the 
separation of computation into rapid and slow loops 
for an object, which dives along the parallel, i.e. at 
the constant flight latitude of 51.5°, for a time period 
of 178 s. Slow and rapid loop intervals were 0.01 s 
and 0.001 s respectively. Columns two through five of 
Table 3.1 represent the position and velocity data of 
an object, obtained by integra ting the strapdown INS 
equations in the absence of strapdown INS sensor er-
rors. In order to estimate the accuracy, the sixth and 
seventh columns represent longitude and altitude of 
an object, according to the law of motion.

Table 3.1 shows that during the integration of 
the strapdown INS equations using separation into 
rapid and slow loops the error of estimating the al-
titude of an object had reached 0.3674 m at the final 
moment of time. These errors have occurred be-
cause the law of motion of a diving object contains 
acceleration discontinuities when transitioning from 

Table 3.1

t, s λ, ° H, m VE, m/s VH, m/s λ, ° exact H, m exact

0.0 46.000000 8000.0000 200.0000 0.0000 46.000000 8000.0000

30.0 46.086297 8000.0000 200.0000 0.0000 46.086297 8000.0000

50.0 46.133297 6228.6880 141.3826 –141.4198 46.133296 6228.5978

70.0 46.173977 3394.4755 141.3195 –141.4198 46.173977 3394.3543

94.0 46.228807 1000.9453 198.4574 –3.7284 46.228806 1000.7404

110.0 46.268902 2002.0787 160.8796 94.2821 46.268898 2001.8203

130.0 46.315223 3891.5989 160.9272 94.2821 46.312217 3891.3160

150.0 46.366189 5000.3301 200.0105 0.0009 46.366180 5000.0000

178.0 46.446775 5000.3574 200.0105 0.0010 46.446761 5000.0000
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one motion phase to another. As it can be seen in 
the first two rows of the table, during the interval 
of 0 to 30 s, when the object is moving horizontally 
with constant velocity, and there are no accelera-
tion discontinuities, the altitude estimation errors 
amounted to less than 0.0001 m.

In order to estimate the impact of perturbations 
of the form (3.4) in the readings of strapdown INS 
sensors while measuring the apparent acceleration 
and the absolute angular velocity of an object, the 
simulation had been conducted, in which perturba-
tions of the form (3.4) had been added to the appa-
rent acceleration and to the absolute angular velocity.

Table 3.2 shows the values of the longitude and 
the altitude of an object, calculated while taking 
into account the perturbations, at the final moment 
of time at 178 seconds for different frequencies N 
and different amplitudes of perturbation of the ac-
celeration Δа and the angular velocity Δω.

As it can be seen from Tables 3.1 and 3.2, the 
perturbations with shown amplitudes have little ef-
fect on the accuracy of calculations for the chosen 
scheme of separating the calculations into rapid and 
slow loops, given the short duration of the dive.
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