ОБРАЗОВАНИЕ В ОБЛАСТИ МЕХАТРОНИКИ И РОБОТОТЕХНИКИ

УДК 37 DOI: 10.17587/mau.17.716-719

А. В. Лопота, директор-главный конструктор, канд. экон. наук, alopota@rtc.ru, Государственный научный центр Российской Федерации Центральный научно-исследовательский и опытно-конструкторский институт робототехники и технической кибернетики (ГНЦ РФ ЦНИИ РТК), Санкт-Петербург

Робототехника и образование в условиях перехода к высокотехнологичному обществу

Обсуждаются основные тенденции развития робототехники в условиях перехода к высокотехнологичному обществу и связанные с ними вопросы образовательной подготовки кадров на примере деятельности ГНЦ РФ ЦНИИ РТК, СПбПУ и СПбГЭТУ "ЛЭТИ".

Особое внимание обращается на проблемы искусственного интеллекта и группового применения роботов в условиях формирования киберфизических систем на базе сетевого взаимодействия автоматизированных технических устройств. В области об-

мирования киберфизических систем на базе сетевого взаимодействия автоматизированных технических устройств. В области образовательной робототехники приведен пример успешной реализации в ГНЦ РФ ЦНИИ РТК модели привлечения, обучения и трудоустройства кадров — "школа—вуз—предприятие".

Ключевые слова: робототехника, киберфизическая система, искусственный интеллект, групповое взаимодействие роботов, образовательная робототехника, мехатроника, робототехнические соревнования, Кубок РТК

О тенденциях развития робототехники

Переход к эпохе высокотехнологичного общества характеризуется возникновением новых подходов к производству и потреблению, направленных на повышение эффективности производства, исключение "механистического" человеческого труда и сохранение экологии.

Ведущие промышленные страны готовятся к усилению мировой конкуренции и разрабатывают новые программы развития [1—4].

По мнению одного из ведущих специалистов в области Интернета будущего, профессора Вольфганга Вальстера¹, киберфизические системы в корне изменят традиционную логику производства, поскольку каждый рабочий объект будет сам определять, какую работу необходимо выполнить.

Производственное оборудование и продукты станут активными системными компонентами, управляющими производственными и логистическими процессами. В их состав войдут киберфизические системы, связывающие виртуальное пространство Интернета с реальным физическим миром.

Машины будущего будут отличаться от существующих мехатронных систем наличием способности взаимодействовать со своим окружением, планиро-

вать и адаптировать свое поведение к изменению условий, учиться новым моделям и линиям поведения.

Это позволит обеспечить возможность эффективного выпуска минимальных партий изделий в большом числе вариантов при быстром внесении изменений в конечную продукцию.

Применение датчиков, встроенных в исполнительные механизмы, обеспечение межмашинного обмена данными и использование активной семантической памяти приведет к появлению новых методов оптимизации, направленных на сохранение ресурсов в производственной среде.

К 2030 г. Германия планирует полностью перейти на систему интернетизированной промышленности. Немецкое правительство инвестирует в эту область около 200 млрд евро. Аналогичные программы запущены в Нидерландах, Франции, Великобритании, Италии, Бельгии и других странах.

В США в 2012 г. была создана некоммерческая Коалиция лидеров умного производства. В нее входят промышленники, поставщики, ИТ-компании, госведомства, университеты и лаборатории. Цель организации — создать открытую умную платформу для промышленных ИТ-приложений.

В 2014 г. компании General Electric, AT&T, Cisco, IBM и Intel создали Консорциум промышленного Интернета (Industrial Internet Consortium), объединяющий сегодня 170 организаций. Цель некоммерческого объединения — устранение барьеров между различными технологиями для того, чтобы обеспечить максимальный доступ к большим данным и усовершенствовать интеграцию физической и цифровой среды.

¹ Главный исполнительный директор, а также Директор по технической и научной работе в Немецком исследовательском центре искусственного интеллекта (DFKI) в Кайзерслаутерне, Саарбрюккене, Бремене и Берлине; член научно-исследовательского союза при Федеральном правительстве; Председатель Высшего консультативного органа в Евросоюзе в области Интернета будущего (программа FI-PPP).

В России признаки "четвертой промышленной революции" тоже уже обозначились. В августе 2015 г. "Российские космические системы" (РКС) и "Ростелеком" подписали меморандум о создании Ассоциации содействия развитию Промышленного Интернета "Национальный консорциум Промышленного Интернета" на международном авиакосмическом салоне МАКС-2015. Цель ассоциации — внедрение технологий промышленного Интернета в российское производство, а также обеспечение межотраслевой интеграции решений в этой сфере за счет объединения усилий крупнейших отраслевых компаний и научно-исследовательских организаций.

Для высокотехнологичного общества характерны требования высокой эффективности не только в области промышленного производства, но и в остальных сферах человеческой деятельности, в частности, обороны и безопасности.

В качестве примера можно привести развиваемую и реализуемую в последнее десятилетие концепцию сетецентрической войны, в которой любое вооруженное формирование представляется в виде компьютерной сети. Она объединяет элементы трех видов: средства обнаружения и отслеживания объектов противника (сенсоры), устройства воздействия на обнаруженные объекты (акторы) и информационно-управляющие системы (процессоры).

Концепции умного производства и сетецентрической войны имеют общую идеологическую основу и неосуществимы без создания нового поколения роботов, обладающих как минимум искусственным интеллектом, способных приспосабливаться и работать в неструктурированной среде, эффективно и безопасно взаимодействовать между собой и с человеком.

Уровень искусственного интеллекта связан, прежде всего, с развитием иерархической структуры модели среды путем формирования все более обобщенных уровней ее представления. От образов внешней среды, непосредственно воспринимаемых сенсорами системы, необходимо переходить к описаниям, позволяющим осуществлять интерпретацию и анализ.

Можно, конечно, называть технологиями искусственного интеллекта способность компьютеров решать информационные задачи, определять, что изображено на картинке или переводить звучание голоса в текстовую форму. Но всем понятно, что наличие искусственного интеллекта мы заподозрим только в той машине, которая будет способна не просто оперировать информацией, а в той или иной степени понимать ее смысл.

Главная проблема, связанная с пониманием естественного языка, — это множественность трактовок, которая может возникать у одного и того же слова в зависимости от контекста фразы. При переходе в специализированную область оказывается, что тематика определяет практическую единственность возможных трактовок. В этом случае успешность работы программы значительно возрастает. Прием перехода к узкой специализации применим

не только к анализу естественного языка, но и к анализу изображений. На этом же принципе строятся системы управления автомобилем без водителя.

Многие задачи, подобные беспилотному вождению, можно успешно решать даже без использования технологий искусственного интеллекта. Нейронные сети с глубоким обучением (Deep learning) достаточно хорошо подходят там, где "программирование в лоб" заходит в тупик. Оказывается, что значительно проще "дать" нейронной сети огромный массив примеров и тем самым обучить ее правильной классификации, чем пытаться самому описать все закономерности и реакцию на них. Простота получения результата в этом случае компенсирует сложность обучения.

Тренировки нейронных сетей, состоящих из большого числа элементов, на огромном числе примеров требуют большого объема вычислений. Традиционные CPU оказываются слишком медленными. Единственный выход заключается в распараллеливании вычислений с помощью графического процессора, который изначально создавался для формирования видеоизображений. Востребованность на рынке нейронных сетей побудила производителей графических процессоров к созданию соответствующего программного обеспечения, облегчающего труд разработчиков (компания NVIDIA).

Несмотря на очевидные преимущества автономных интеллектуальных роботов, одиночное устройство не может быть использовано для выполнения крупномасштабных задач, так как обладает сравнительно небольшими возможностями. Решением является одновременное применение нескольких роботов. Преимущества группового применения роботов очевидны. Во-первых, это больший радиус действия, во-вторых, расширенный набор выполняемых функций и, наконец, более высокая вероятность выполнения задания, достигаемая за счет возможности перераспределения целей между роботами группы в случае выхода из строя некоторых из них.

Такие сложные задачи, как масштабное исследование и зондирование поверхности других планет, сборка сложных конструкций в космосе и под водой, участие в боевых операциях и разминировании территорий могут быть эффективно решены роботами только при их групповом взаимодействии. Особое значение групповое взаимодействие роботов приобретает в такой перспективной области, как микроробототехника.

Для достижения конкретной цели, стоящей перед группой роботов, в случае детерминированной среды каждый робот может выполнять заранее определенную последовательность действий. В случае динамически меняющейся среды эта последовательность должна быть выработана системой управления группой в процессе достижения цели. Действия роботов должны быть определенным образом скоординированы, что и составляет основную цель технологии группового управления.

Решение рассмотренных выше проблем требует консолидации разработчиков робототехнических комплексов со специалистами смежных научно-технических направлений, включая специалистов в области технической кибернетики.

Образовательная робототехника

Компетенции Российской Федерации на рынке робототехники наиболее сильны в математическом моделировании, разработке ПО и создании уникальных технологических решений. Другими словами, они сосредоточены в тех областях, которые в настоящее время приносят максимальную прибыль и будут востребованы при переходе к следующему технологическому укладу. Это требует высококвалифицированного кадрового обеспечения, адаптированного к специфике работы в соответствующей области.

Среди факторов, ограничивающих развитие робототехники в России, необходимо отметить обострившийся в последние годы дефицит кадров и недостаточный уровень подготовки специалистов. В области робототехники подготовку специалистов проводят более 60 организаций высшего образования по специальностям "Мехатроника", "Мехатроника и робототехника", "Роботы и робототехнические системы".

Роботостроение — высокотехнологичная отрасль, имеющая первостепенное значение для социально-экономического развития государства, его обороны и безопасности. Современные робототехнические системы должны работать в экстремальных условиях, обладать чрезвычайной надежностью и соответствовать другим техническим требованиям, в зависимости от круга решаемых задач.

Необходимость в современных робототехнических средствах безопасности ставит перед специалистами задачу межотраслевого характера, связанную с реализацией принципов интеллектуализации, миниатюризации и унификации. Решение этой задачи невозможно без высококвалифицированного кадрового потенциала, способного владеть современным инструментарием для проектирования на базе новейших технологий.

Необходимо дальнейшее совершенствование системы подготовки и повышения квалификации специалистов данной отрасли, внедрение образовательных и профессиональных стандартов, соответствующих международному уровню. Формирование профессионального кадрового потенциала — одно из условий успешного развития отечественного роботостроения.

ГНЦ РФ ЦНИИ РТК решает важнейшие государственные задачи и ведет разработки в различных направлениях, которые требуют специалистов высочайшей квалификации. За последние годы при активной поддержке Минобрнауки РФ предпринят целый ряд шагов для повышения уровня подготовки специалистов. Был избран путь поиска талантов в процессе обучения и их индивидуальная

поддержка в освоении существующего конструкторско-технологического инструментария и инженерного творчества. Что касается конкретных действий, которые были предприняты для решения задачи подготовки высококвалифицированных научных и инженерных кадров, то они сводятся к следующему.

В Санкт-Петербургском политехническом университете Петра Великого с участием ГНЦ РФ ЦНИИ РТК были созданы две кафедры: "Мехатроника и роботостроение при ЦНИИ РТК" и "Телематика при ЦНИИ РТК".

В Санкт-Петербургском государственном электротехническом университете "ЛЭТИ" им. В. И. Ульянова (Ленина) создана базовая кафедра робототехники и автоматизации производственных систем.

В ГНЦ РФ ЦНИИ РТК создано студенческое конструкторско-технологическое бюро (СКТБ), в котором уже для студентов младших курсов профильных кафедр обеспечены необходимые условия для получения практических навыков по направлению "Мехатроника и робототехника". Деятельность СКТБ была взаимоувязана с соответствующими кафедрами вузов.

Базовая кафедра "Робототехника и Автоматика" входит в состав факультета электротехники и автоматики ЛЭТИ, ведет учебную работу по направлениям подготовки магистров и специалистов высшей квалификации. Она имеет прикладную направленность по тематике ГНЦ РФ ЦНИИ РТК, который предоставляет кафедре материально-техническую базу и методическое сопровождение в целях организации и реализации практико-ориентированного учебного процесса. Его цель — подготовка кадров высшей квалификации, ориентированных на инновационную деятельность на основе научно-технического творчества, способных комплексно смотреть на задачу, имеющих знания и практический опыт по взаимодействию подсистем.

Выпускники кафедры, активно участвующие в этом учебном и творческом процессе, после окончания вуза являются готовыми специалистами, что в текущих условиях сокращает на 3...5 лет сроки профессионального развития. Наиболее успевающим студентам после окончания учебы предоставляется возможность поступления в аспирантуру и на постоянную работу в ГНЦ РФ ЦНИИ РТК.

На базе школы № 150 Калининского района при поддержке ГНЦ РФ ЦНИИ РТК будет создано робототехническое конструкторское бюро, а в Центре образования "Кудрово" в ЖК Новый Оккервиль, который откроется 1 сентября 2016 г., ГНЦ РФ ЦНИИ РТК совместно с ЛЭТИ будет проведен целый ряд мероприятий по поддержке научно-технического творчества школьников.

С 2013 г. ГНЦ РФ ЦНИИ РТК проводит Молодежные робототехнические соревнования "Кубок РТК", целью организации которых является создание условий для развития научно-технического творчества учащихся и профориентации молодежи по направлению мехатроники и робототехники.

Уникальность соревнований "Кубок РТК" в применении разработанного специалистами ГНЦ РФ ЦНИИ РТК реконфигурируемого полигона, который, в зависимости от решаемых юными робототехниками научно-технических задач, позволяет менять виды препятствий. По замыслу ГНЦ РФ ЦНИИ РТК соревнования должны стимулировать у школьников и студентов интерес к новаторским разработкам в области робототехники для решения конкретных проблем, демонстрирующим умение грамотно строить алгоритмы и решать навигационные задачи. Успешный опыт проведения соревнований доказал актуальность данного мероприятия, его уникальность и целесообразность внедрения новых образовательных технологий данного формата в учебный процесс образовательных учреждений.

Для повышения интереса к робототехнике у школьников и студентов в ГНЦ РФ ЦНИИ РТК был создан Центр демонстрации и популяризации результатов и достижений в области робототехники и мехатроники, деятельность которого направлена на поиск и поддержку талантливой молодежи,

увлекающейся научно-техническим творчеством, привлечение внимания к разработкам в области робототехники, развитие лидерских качеств.

В Центре специалисты ГНЦ РФ ЦНИИ РТК демонстрируют ребятам разработки и делятся своим опытом по их созданию и применению, а также проводят ознакомительные лекции-экскурсии и практико-ориентированные семинары по робототехнике.

Таким образом, на базе ГНЦ РФ ЦНИИ РТК была успешно реализована модель привлечения, обучения и трудоустройства кадров школа—вуз—предприятие.

Список литературы

- 1. **Индустрия** 4.0: Производственные процессы будущего. Альманах "Управление производством". URL: http://www.up-pro.ru/library/opinion/industriya-4.0.html
- 2. **Что** нужно знать об Индустрии 4.0 и Интернете вещей; дайджест The Runet. URL: http://www.therunet.com/articles/4826-chto-nuzhno-znat-ob-industrii-4-0-i-internete-veschey
- 3. **Промышленная** революция 4.0: угрозы реальные и мнимые; сайт konstruktor.net. URL: http://konstruktor.net/podrobnee-au/promyshlennaja-revoljucija-40-ugrozy-realnye-i-mnimye.html
- 4. **Потенциал** российских инноваций на рынке систем автоматизации и робототехники. Экспертно-аналитический отчет. Москва: ООО "Ларза" по заказу ОАО "РВК", 2014. 128 с.

Robotics and Education in the Context of Transition to the High-tech Society

A. V. Lopota, alopota@rtc.ru, Russian State Scientific Center for Robotics and Technical Cybernetics, St. Petersburg, 194064, Russian Federation

Corresponding author: Lopota Aleksandr V., Director-Chief Designer, Ph. D., Russian State Scientific Center for Robotics and Technical Cybernetics, St. Petersburg, 194064, Russian Federation, e-mail: alopota@rtc.ru

Received on July 03, 2016 Accepted on July 22, 2016

The article is devoted to the main development trends in robotics in the context of transition to a high-tech society and the related issues connected with training of specialists using the example of the Russian State Scientific Center for Robotics and Technical Cybernetics (RTC), St. Petersburg Politehnic University (SPb PU) and St. Petersburg Electrotechnical University "LETI". Special attention is attached to the problems of artificial intelligence and group application of robots in conditions of building of the cyber-physical systems based on the network communication of the automated technical devices. The area of the educational robotics is presented by the example of the successful implementation of the "school — higher educational institution — enterprise" model of the Russian State Scientific Center for Robotics and Technical Cybernetics intended for attraction, education and employment of young people.

Keywords: robotics, cyber-physical system, artificial intelligence, group interaction of robots, educational robotics, mechatronics, robotic contests, RTC championship

For citation:

Lopota A. V. Robotics and Education, *Mekhatronika, Avtomatizatsiya, Upravlenie*, 2016, vol. 17, no. 10, pp. 716—719.

DOI: 10.17587/mau.17.716-719

References

1. *Industria 4.0: Proizvodstvennnye voprosy buduschego Almahakh "Upravlenie proizvodstvom"* (Industry 4.0: Production processes of tomorrow Almanac "Production management"), available at: http://www.up-pro.ru/library/opinion/industriya-4.0.html

- 2. Chto nuzhno znat ob Industrii 4.0 i Internete veschei; daidgest TheRunet (What do you need to know about the Industry 4.0 and Internet of things; Digest TheRunet), available at: http://www.therunet.com/articles/4826-chto-nuzhno-znat-ob-industrii-4-0-i-internete-veschey
- 3. **Promyshlennaya** revolutsia 4.0: ugrozy realnye i mnimye; sait konstruktor.net (Industrial revolution 4.0: real and putative threats; web-site konstruktor.net), available at: http://konstruktor.net/podrobnee-au/promyshlennaja-revoljucija-40-ugrozy-realnye-i-mnimye.html
- 4. **Potencial** rossiiskikh innovatsii na rynke system avtomatizatsii i robototekhniki (Potential of Russian innovations in the market for automation and robotics systems), expert-analytic report, Moscow, Larza JSC by order of RVC JSC, 2014, 128 p.