DOI: 10.17587/mau.19.11-18

Complete Pole Placement Method for Linear MIMO Systems

V. N. Ryabchenko, Professor, N. E. Zubov, Professor, Nikolay.Zubov@rsce.ru,
l. V. Sorokin, Professor, A. V. Proletarskii, Professor,
Moscow State Technical University after N. E. Bauman, Moscow, 105005, Russian Federation

Corresponding author: Zubov Nikolai E., D. Sc., Professor,

Moscow State Technical University after N. E. Bauman, Moscow, 105005, Russian Federation

e-mail: Nikolay.Zubov@rsce.ru

Accepted on 11.10.2017
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1. Introduction

The problem of pole placement or eigenvalue as-
signment for linear dynamic systems with continuous
and discrete time has been considered in various for-
mulations in numerous papers (see, for instance, [1]—
[13]), yet it has not lost its relevance, especially for
Multiple-Input Multiple-Output dynamic systems
(MIMO systems).

Let us consider a linear MIMO system of the fol-
lowing form:

Dx(1) = Ax(?) + Bu(¥), (1)

where x e R” is the state vector; u € R” is the input vec-
tor; R is a set of real numbers; # > r; and D is a symbol
denoting either the differentiation operator, that is,
Dx(f) = x (9, or the shift operator in time Dx(f) =
=x(r+ 1).

It is assumed that the matrices B € R” * 7 and
C e R™ * " are full rank matrices, and the matrix
A e R" ™ " has a set of eigenvalues

eig(4) = {A; e C: det(Al, — A) = 0},

where 1, is the identity matrix of size n X n; C is the set
of complex numbers (complex plane) and necessarily
includes A; € C such that Re(X;) > 0 for Dx(#) = x (¥
and [A] > 1 for Dx(#) = x(¢+ 1). Here, [A] is the absolute
value of ;.

Let us introduce the concept of C5°, which, depen-
ding on the type of MIMO system under study (con-
tinuous or discrete), denotes either the left half C of

the plane, that is, Cs2 = C~, or the interior of the unit
circle centered at the origin of C, that is, CSb = Cpj<1-

It is assumed that for the MIMO system (1.1), there
exists feedback control of the form

u(?) = (1), (2)
where F e R” ™ " is the state controller matrix.

The control of system (1) using laws (2) is the clas-
sical problem in which it is necessary to find a matrix F
such that certain prescribed requirements for the con-
trol process are fulfilled. These requirements can be di-
vided into three groups [7]:

a) requirements for the pole placement of the
closed-loop system (eigenvalues of the matrix 4 + BF)
at the prescribed points of CS2 or in the prescribed do-
main CSt2b;

b) requirements for placement of poles and zeros
(certain zeros of the transfer matrix of the MIMO system
[13], [14]) of the closed-loop system at the prescribed
points of C or in the prescribed domains of CStab;

¢) requirements for the transient processes in the
closed-loop system in the sense of the minimum of a
certain functional.

Requirement (a) applies to all known formulations
of the stabilization problem. In this case, additional
conditions of complete controllability and complete
observability of the system are typically imposed.

Requirement (a) is especially pronounced in formu-
lations of modal control [1], [2], [4]—I[8], [12]—[17].

It is well known that the characteristic polynomial

det(\I, — A — BP), 3)

where A = s for the case of Dx(7) = x (¢) and A = z for
the case of Dx(7) = x(¢ + 1), determines the pole location
of the closed-loop system on C, which determines the
stability of MIMO system (1). Imposing the require-
ments for the desirable (in the sense of condition (a))
location of poles, the stability and (indirectly) the quality
of transient processes in the closed-loop system can be
ensured.
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The requirements for the pole location can be speci-
fied by factorizing polynomial (3); for example,

detOd, —A—BP = (A — A )(h — Ay)..(h —21,)),(4)

where ; are the prescribed values of the polynomial
roots (eigenvalues of the matrix 4 + BF) or of the de-
composition of the matrix

A+ BF= WAW™ L, (5)

where A is a block-diagonal matrix and W'is the trans-
formation matrix.

In the matrix A, for each i-th real pole X; corres-
ponding to the given value of the root of the charac-
teristic polynomial (4), there exists a block with a size
of 1 X 1, and for each pair of complex conjugate roots,
there exists a block with a size of 2 X 2 of the form

If multiple roots are given, this is reflected in the
structure of the matrix A, similarly to the Jordan form
of the matrix [7, 8].

Another method of fulfilling requirement (a) is to
use linear matrix inequality (LMI) domains [1], [11].
Let D be a given convex domain C*2° in the sense of
requirement (a); then, there exist LMIs describing the
boundaries of this domain.

For MIMO systems with # >> 1, the available meth-
ods of pole placement are often inapplicable in practice
because of their disadvantages, such as ill-conditioned
matrices (for example, controllability matrices), possible
insolvability of the problem in the case of complete
controllability (for example, the constraint of the form
of the difference of the algebraic and geometric multi-
plicities of the assigned poles), fast growth of dimen-
sionality of the equations to be solved, and so on.

This paper presents a complete pole placement
method in the MIMO system with state feedback; that is,
in this method, requirement (a) for the MIMO system
(1) is ensured using law (2) in the sense of placing the
eigenvalues of the matrix 4 + BF in the domain CS%@.
The method is based on a special similarity transforma-
tion of the original system. The elements of the matrix 4
and (or) their combinations are determined explicitly,
and the change of these elements using feedback makes
it possible to ensure the stability of the closed-loop system.
As will be shown later, this method does not require the
solution of any special matrix equations (like Sylvester’s
equation), has the same form for the continuous and
discrete system models, has no limitations with respect
to the algebraic and geometric multiplicities of the poles,
and can be easily used for the synthesis of regulators in
systems with a large dimension of the state space.

2. Decomposition of MIMO systems

Let B' be a rectangular matrix, called the divisor of
zero, that satisfies the conditions [8], [18]

B'B=0,, (6)

(7)

where B* and B are pseudoinverse Moore-Penrose
matrices; 0, » , is the zero matrix of size » X r. We take
a non-singular matrix [18]

BB =1

n—r

1
T= [BJ : (®)
Bt
which has the inverse matrix:
N -1
T!= [3] = (B-*i B )
Bt

Performing multiplication of the initial and inverse
matrices, we obtain the identity

(B“?B)[...l.?.l..l = BB -+ BB =1, (10)

Note that the operations "L" and "+" commute for
the matrices of full rank; that is, in this case
Bt = B (12)

If the selected matrix B is the orthogonal matrix,
then the condition (2.2) will transform to the following:

13)

Consider the multilevel decomposition of the MIMO
system (1.1) with the matrices (4, B), where 4 € R" * "
and B e R"* ™,

Zero (initial) level
AO =A, BO =B

BB =1,

n—r-

(14)
First level

A = B'AB", B, = B'4B (15)

k-th (intermediate) level
i 1+ 1
A= B, A —1B;_ |, By= B, A 1B (16)
L-th (final) level, L= ceil(n/r) — 1,

1 1+ 1
Ap=B; A, \B; | ,B =B A B .7

12

MexaTpoHuka, aproMaTu3zanus, ynpasiaenude, Tom 19, Ne 1, 2018



Here ceil(*) is the operation of rounding the number
(*) upwards; for example, ceil(0.1) = 1, ceil(1.6) = 2,
ceil(2.01) = 3, and so on.

Theorem 1. If the MIMO system (1.1) with a pair of
matrices (4, B) is completely controllable, the all pairs
of matrices (4;, B;) (2.10)—(2.12) are also completely
controllable.

Proof of Theorem 1. It is known that, for complete
control of MIMO systems, it is necessary and sufficient
that [1, 2, 7, 8, 11, 14]

VA € C: rank(4 — AL, B) = n. (18)

The condition VA e C can be replaced by the con-
dition VA e eig(A).

Using matrix (2.3), we transform the pencil of ma-
trices as:

. i .

TA4— I, B) = [3} (4— I, B). (19)
B+

Expanding the right-hand side of (2.14), we obtain

1 ) Log
[BJ A—r1,ip=| B UMD O nr |
B (A-\L1): I

r

and furthermore, due to the nonsingularity of the matrix
T (2.3), we have

. :
B (A—?uln)go(n—r)xr ) (20)
i fesbeenneteeens

B (A4-)1): I

r

rank(4 — A1, B) = rank

It follows from the structure of (2.15) that the sub-
matrix

(BY(A—L) i 1)

has the rank r for all A. Therefore, for the condition
(2.13) to be satisfied, it is necessary and sufficient that
the rank of the submatrix B(4 — M,) satisfy the con-
dition

VA e C: rankB (4 — L) =n—r.

We carry out the nonsingular transformation of the
submatrix B(4 — A1, as

BY(A—I)T' = B-(4— \L)(B'": B).
Expanding the right side of (2.16),

21)

BL(4—\I1)(B'":B) =
= (B *AB" —\I,_, ! B*AB)= (4, — M, _, | B)).

Comparing the right-hand sides of (2.13) and (2.17),
we arrive at the following intermediate result: the MIMO
system (1.1) is completely controllable if and only if the
pair of matrices (4;, B;) is completely controllable.

Then, transforming the pair of matrices (4;, Bj)
similarly to how this was done above, we obtain by in-
duction the assertion of Theorem 1. The proof of The-
orem 1 is complete.

3. Synthesis of the MIMO system regulator
and parameterization

Without loss of generality, we assume that all the
matrices B;in (2.9)—(2.12) are the matrices of full rank
[8], [16]. Then the following statement is true:

Theorem 2. Let the MIMO system (1.1) be com-
pletely controllable, and let matrix F e R” ™ ™ satisfy the
conditions:

F=Fy=®)B, — B, A, B, = B, — F,By, (23)

F,=®,B, — B A, B, = B] — KB}, ... (24)

— — — +
F,= B, — B A, B, = B, — F.1 B, ... 25

F,=®,B, — B, A4, (26)

Then

L+1

cig(d + BF) = U eig(®; ). 27)

Proof of Theorem 2. Consider the following
formulas for the controller matrix:

F=oB — B A, B = B"(I,— BF|B").

Then, we have the chain of nonsingular (similarity)
transformations

...............................................

Then, similarly to the previous case (2.15), we have { BB BAB ] (28)
. el el
rankBL(4 — 1) = rank(4; — AL, _, | B). (22) F\B"AB" - 0F o+ FB 4B
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we apply the nonsingular similarity transformation:

(29)

If (3.7) is multiplied on the left by (3.6), we obtain

[' 0 N ....... B'AB” | BB } _
~Fy i1, )\ F,B*"AB™" ~0F 0+ F,B"AB
— | BAB B 4B |
~oF, i @

The multiplication of the result of the preceding
transformation on the right by the inverse of (3.7) yields

- [ B AB' + B'ABF, EBLAB} .
0 o

Thus, the nonsingular similarity transformation (3.7) is
used to obtain the matrix

Its eigenvalues clearly have the form:

1, 1+ 1 ol
eig[..?f’...41.’.’.....f.ﬁ.f?f’.ﬁ.é?f’..ff‘.?i’.] _
0 )}

j = eig(®) U eig(B 4B" +

+ BLABF)) = eig(®) U eig(4; + B F)).

Transforming matrix (3.8) similarly to the above
transformations, we obtain

1 1+ 1 S
eig[ .?f’.l.f‘.l..‘f!....f.?f’.l.f‘.l..’.’.!f%é.?.l.i‘.l..’f’.!.] -
0 N
= cig(®)) U cig(B; 4B + B A\BF,) =
= elg(CI)l) U elg(A2 + B2F2).

If these transformations are continued until the pair
of matrices (4;, By), where L = ceil(n/r) — 1, we obtain
the equality (3.5), which proves the theorem.

The following controller synthesis algorithm ensuring
the prescribed pole placement follows from Theorem 2:

(1) Set the matrices 4y = A and By = B.

(2) Calculate L = ceil(n/r) — 1.

(3) Set the matrices ® = @, Dy,

L+1
_Ul eig(®; — 1) is the desirable spectrum of the closed-
i =

..., @y such that

loop system.
(4) Calculate the zero divisor By = B and then the
0

pseudoinverse matrices 4y = BLABT, B, = B1AB, ...

(5) Calculate the zero divisor B,f, the pseudoinverse
matrix B,f+ , and then the matrices 4, + | = B,ﬁAkB,fr ,
B+ = B AB ...

(6) Calculate the zero divisor Bi_2 , the pseudoin-
verse matrices Bi_z and B,f+ , and then the matrices
A, =By _,A; B yandB, =By ,A; ,B; .

(7) Calculate the zero divisor BLL_1 , the pseudoin-
verse matrices BLL: and B,fr , and then the matrices

i 1+ 1
ALZBLflAL—lBLfl andBL=BL71AL_lBL_1.
(8) Sequentially calculate the matrices:

FLz(DLBZ - BZAL’

— . 1
B, =B, | —FB_,
FL—IZCDL—IBzflAL—l"“

B = B — KB, F,=®,B, — B, 4,

The controller with matrix (3.1) guarantees that
condition (3.5) is fulfilled. A block diagram of the pole
placement algorithm for the orthogonal zero divisor is
shown in Fig. 1.

Corresponding changes should also be made in the
formulas (3.1)—(3.3) of the controller.

The algorithm of the complete pole placement in
certain cases provides an opportunity to obtain the final
formula of the controller (Ackermann’s formula) for the
Single Input Multiple Output (SIMO) systems [8]—[10],
[14]. For the simplest case of n = 2r (L = 1) and the
orthogonal divisor of zero, from Theorem 2 we obtain
the following final formula of the controller:

F= oy(B" — [0,(B*4B)" — (B*4B)* B*AB'"|B") —
— (B" — [®(B*4B)* — (B+4AB)* B*AB'"|B1)A4,
ensuring equality for the set of eigenvalues
eig(4 + BF) = eig(®y) U eig(®dy).

Theorem 2 and formulas (3.1)—(3.5) show that no
restrictions are imposed on the matrices ®;. Any ma-
trices that satisfy the condition of matching the eigen-
values set with the specified set can be used as the ob-

14
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Also, it is impossible to solve this prob-
lem, for example by using the Kautsky-
Nichols-Van Dooren method [15] in this
situation, if the data for all specified
eigenvalues (specified poles) coincide.

Let us show that these difficulties do
not affect the workability of the method
presented. We make use of the algo-
rithm described in Section 3, executing
it incrementally.

1) Define a template for the zero le-

( system ) ( regulator )

Dx(t) = Ax(t) + Bu(t) . . ) .
[ m] [ e=olo—rw)- (o) |

Zero Level of decomposition

A=A B =B

0 1]

" - F .
First Level of decomposition ' vel of decomposition
™
A Bu AUBIJ 81 = Bc.: AUBU i (I}lB! BI 4 N
B =B-rB- |\ _ |5
(BB =1 | BB =0 . L ) Ay=A4=70:2:0 |-
- Y P teesens
q} 0:0:2
- g F,
k-th Level of decomposition k \ k
1:3
By=B="7i. (33)
0:1
E-1"k-1 - k—1"k-1

2) Calculate the parameter L =
=ceil(3/2) — 1 ==2—1=1. It fol-
lows from this that for the MIMO sys-
tem (4.1) there are only two levels of de-
composition: the zeroth one and the
first one (which is the finite level at the

L-th Level of decomposition

L=1""L=1""L=1 L=1""L=1""L=1

|A - Br.l 1A1 |Bxl 1 BA- = B:—iA.(—]Bi-—] F ___( F-'.- = (I) - E A
|B B =1 BB _ =0 L B5=F F.B

[A_B*A B | B,=B; A, B

[ F,=®,B —B/A, J
A

|BJ‘B‘L—I BB =0 J

ez = - 1 == _J ! same time).
Fig. 1. Block diagram of the pole placement algorithm . 3) Define matrices with the desirable
eigenvalues:
. . . . . . _ )\‘ :0
chj[s. In this case, all the matrices ®; satisfying the con- ®=dp=|." 137 LD =23, (34)
dition 0L,
L+1 . . . . . . _
: _ . taking into consideration that eig(®() U eig(®;) = {A,
ig 1 eig(®; — 1) = Aspecified, (31 Ly, A3} are specified poles.

4) Calculate the zero divisor BOl = Bt the pseudom—
verse matrix land after that the matrices A1 B, AB++
and B; = B, AB™. We will obtain

where Agpecified 1S the given set of eigenvalues (specified
poles), form a set of the equivalent controllers.
It is not difficult to modify the above algorithm by

using the orthogonal matrices instead of the non-or- Br=(-1:1!3 35

thogonal zero divisors [17]. 0o = ( 19, 33)
4. Examples of solutions 1+ 1 |-~ 1

to the complete pole placement problem B, = 11 1 | (36)

Consider controller synthesis examples that provide
complete pole placement.

Example 1. Consider a fully controlled MIMO system
for the case of Dx(f) = x (f) with the matrices [19]

(37)

A feature of the MIMO system with a pair of ma-
trices (4.1) is the difficulty of solving the pole place-
ment problem due to defects in the matrix 4. This refers
to the modifications of the Ackermann and Bass-Gura
methods [2], [3], [8].

(38)

W
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Therefore, at the first decomposition level we have
the single-output (that is, the state) and two-input MIMO

scalar parameter. Indeed, completing the transforma-
tion, we obtain

system. N N N
Al + BIFI = Al + BI(CDIB] - Bl Al + Bl UJ) =
4, = BiAyBT =2, P .
1 = Al + Bl((DlB] - Bl Al) + B]Bl w.
. 0
B, = By A)By = (-1} 0). (39)

After that, without loss of generality, we assume that in
(4.12) there is an arbitrary parameter equal to o = o/11,
where o is also an arbitrary parameter; then (43) can be
rewritten in the equivalent form:

5) Now it is necessary to calculate the matrices
Fi=o,B, — B, A, By = B, — F,By, and Fy =
= ®yB, — B, 4, in consecutive order. For this pur-
pose, we define the pseudoinverse matrices

B L AR N

(3+u))(7»2 2) .—(3+m)(k2+1). (2 30)(ky-2)

It is obvious that the given solution does not contain
restrictions on specifying the same pole with a multiplicity
of three. Assuming that A = & = A, = A3, we obtain

Now we can obtain expressions for the correspon-
ding controllers:

+ —+ 1

21
=13 (—1]—[—1J2 +[.Q.J o= "M ] |, @41)
0 o) 11 1) | —

x[x](z M+2h-4 T2 b 3P+12 ] (45)
""('3'L;';,S)"('X'"é')""'-"(“3'1'};5}'('%4"1")"(2"""3},;')'(1""2‘)'

B =B, — By, =
Here, if the value ® = —3, this would minimize the
21 information used in feedback channels, namel
=1 [..1...19.:.3..} —| "Ml i1i3) = Y
11 312319 ) e

R R et I

2 dying-1i305-6 0 07T

= 3 ........ 3 ........ 2 ........... , (42)

T '—-T i Rloj FExample 2. Consider a MIMO system (1.1) with dis-

crete time (Dx(f) = x(¢ + 1)) and the problem of con-
troller synthesis that ensures a finite duration of the closed
system transition process. In this case, the 4 + BF matrix
will only have nulls as its eigenvalues [8]. This require-
ment means that any nilpotent matrices with an index
of nilpotency of no more than r [8], [18] can be taken
as the matrices ®;.

Choose, for simplicity, zero matrices 0, x , as the
matrices ®;. Then the final part of the algorithm that
has been discussed in Section 3 of this paper will have
the form

FO = q)OBO_ - BO_AO =

~ _[ Ai0 } 2-23i h3—1i323-6

FL = _BZAL,

3h A3 —6Ag + 623+ 12 _ N L _
) B, =B, " FB ,F_=-B,_ 4, ..,
(ﬁ—?ﬂﬁ)(lz—z)

- 4 _ n — _p
In formulas (4.10)—(4.12), freedom in specification B, =B, — LB, K B, 4y,

of the controller for the first level is considered by

means of the component Ble, where w is an arbitrary By = By — F\By, F= K B A
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Here, in the situation where n = 2r (L = 1), the for-
mula of the controller that ensures a finite duration of
the transition process in the discrete MIMO system has
the following simple form:

F=—(B" + (B*AB)" B*AB"B)1. (47)

For n=3r (L = 2), the formula becomes more com-
plicated:

F=—(B" + (B'4AB)" + (B*AB)'B+AB'"B'4B)" x
X((B*AB)-B-AB-"BAB)(B-AB)' B+ AB'" x
X(BLAB) " ((B+AB)-B-AB'"B1AB)'") x

xBLAB"BL)A. (48)

The distribution of the eigenvalues of the MIMO
discrete system matrix (as per the circular Girko law
[20]) with the dimension of the state space n = 3600 and
r= 900 (L = 3) on the complex plane is provided in
Fig. 2. The distribution of the eigenvalues for the
closed-loop system is shown in Fig. 3. As can be seen,
the accuracy of stabilization of the large randomized
matrix’s eigenvalues is ~ 1072,

5. Assessment of the computational burden

The computational burden of this method can be es-
timated on the basis of solving the precise poles place-
ment problem at the points (—1, 0) and (=2, 0) on C
for the system (1) with a pair of matrices [16]

d dn(r,r)): 0
= (roun(rann(rr))rxr) , B = randn(2r, r).

Here "round" is a rounding operation; randn(2r X r)
is the size of the submatrix 2r X r, and randn(r X r) is
the size of the submatrix » X r, whose elements are dis-
tributed in accordance with the pseudonormal law.

The results of the study for the MIMO system are
presented by a diagram in Fig. 4. The abscissa axis rep-
resents the system’s (1) n-dimensional state space, and
the ordinate axis represents the time 7 of the problem
to be solved in the Matlab environment using a com-
puter equipped with an Intel® Core ™2 Quad CPU of
2.66 HGz with 3.25 Gbyte of RAM. For n < 100, on
the basis of statistical tests of 1000 samples, the following
approximating polynomial was obtained:

To(n) ~ 7,510 0% = 5,610 % + 2,6 - 1074,

In all tests, the pole placement error is within the
range of 10_'4...10_9; that is, it is a negligible quantity.
It should be noted that, with the help of Matlab pro-
cedure place, in which the Kautsky-Nichols-Van
Dooren method [21] is implemented, a similar problem
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can only be solved up to n = 500. At the same time, the 0
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computational burden, when n > 100, will be higher b - e e e e n !
than previously attained values when n > 500. Fig. 4. Computational burden of the method
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6. Conclusion

In this paper, an efficient method of full placement
of the poles in linear MIMO systems has been pro-
posed. The method is based on decomposition of the
original model of the initial system determined in the
state space. The method does not require the solution
of a special matrix equation, it has the same form for
continuous and discrete cases of the system model rep-
resentation, it has no limitations with respect to the al-
gebraic and geometric multiplicity of the specified
poles, and it can be easily implemented in a Matlab
software environment. Examples of solutions of precise
pole placement problems for various MIMO systems,
including systems with a state space of up to a few thou-
sand, are presented. A comparative assessment of the
computational burden has been carried out, demon-
strating the advantage of the method in relation to the
widely known Kautsky-Nichols-Van Dooren method.

Taking into account the duality of control and ob-
servation problems for linear MIMO systems, by using
the proposed method it is easy to obtain formulas for
the modal synthesis of the state observer.
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