
563Мехатроника, автоматизация, управление, Том 23, № 11, 2022

Abstract

The risks associated with the isolated design of complex software systems within individual industries are analyzed, where not only
the same thing is often done, but also the quality of the design suffers due to incomplete competence of the implementers. The approach of
dividing competence and responsibility in complex software development by introducing an additional domain-specific layer of interaction
between the software developer and the subject area specialists is discussed. The use of an adaptive modelling system as a tool for such
separation is proposed. It is shown that the use of adaptive modelling as a common development platform for industry-specific CAD will
not only improve the quality of production design in different industries, but will also simplify the design of production in related fields.
Finally, it is shown that the use of a common platform will avoid the costs associated with the trend towards simplification and atomization
of software developed in our country in the face of sanctions and the degradation of global connections.

Keywords: production process modelling, production process design, modelling simulation, subject area, modelling system, adaptive
modelling system, domain-specific language, problem-oriented language

Анализируются риски, связанные с изолированным проектированием сложных программных систем внутри от-
дельных отраслей промышленности, при которых нередко не только делается одно и то же, но также страдает
качество разработки из-за неполной компетенции исполнителей. Рассматривается подход разделения компетенции
и ответственности при разработке сложного программного обеспечения за счет введения дополнительного предмет-
но-ориентированного слоя взаимодействия разработчика программного обеспечения со специалистами предметной
области. Предлагается использование адаптивной системы моделирования в качестве средства такого разделения.
Показывается, что использование адаптивной системы моделирования в качестве общей платформы разработки
отраслевых САПР не только повысит качество проектирования производств в различных отраслях, но также упро-
стит проектирование производств в смежных областях. Наконец, показывается, что использование общей плат-
формы позволит избежать издержек, связанных с тенденцией упрощения и атомизации программного обеспечения,
разрабатываемого в нашей стране, в условиях санкций и деградации глобальных связей.

Ключевые слова: моделирование производственных процессов, проектирование производственных процессов, ими-
тационное моделирование, предметная область, система моделирования, адаптивная система моделирования, пред-
метно-ориентированный язык, проблемно-ориентированный язык

СИСТЕМНЫЙ АНАЛИЗ,
УПРАВЛЕНИЕ И ОБРАБОТКА ИНФОРМАЦИИ

 DOI: 10.17587/mau.23.563-569

M. V. Gordin, gordinmv@bmstu.ru, G. S. Ivanova, gsivanova@bmstu.ru,
A. V. Proletarsky, pav@bmstu.ru, M. V. Fetisov, fetisov.michael@bmstu.ru,

Science and Educational Center "Robotics" Bauman Moscow
State Technical University, Moscow, 105005, Russian Federation

Corresponding author: Fetisov Mikhail V., Senior Lecturer, Department of Computer Systems and Networks,
Bauman Moscow State Technical University, Moscow, 105005, Russian Federation, e-mail: fetisov.michael@bmstu.ru

Accepted on August 5, 2022

Adaptive Modelling System as a Unifi ed Platform for Industry-Specifi c CAD Systems

For citation: Gordin M. V., Ivanova G. S., Proletarsky A. V., Fetisov M. V. Adaptive Modelling System as a Unified Platform for Industry-
Specific CAD Systems, Mekhatronika, Avtomatizatsiya, Upravlenie, 2022, vol. 23, no. 11, pp. 563—569.

DOI: 10.17587/mau.23.563-569

УДК 004.434 + 004.942:658.5 DOI: 10.17587/mau.23.563-569

М. В. Гордин, канд. техн. наук, и. о. ректора, gordinmv@bmstu.ru,
Г. С. Иванова, д-р техн. наук, проф., gsivanova@bmstu.ru,

А. В. Пролетарский, д-р техн. наук, проф., декан факультета "Информатика и системы управления", pav@bmstu.ru,
М. В. Фетисов, ст. преподаватель, fetisov.michael@bmstu.ru,

МГТУ им. Н. Э. Баумана, Москва

Адаптивная система моделирования
как единая платформа отраслевых САПР

564 Мехатроника, автоматизация, управление, Том 23, № 11, 2022

Introduction

At the moment, humanity is witnessing a glo-
balisation that only recently reached its highest level
in human history begin to weaken and roll back [1].
The economic relations between regions and coun-
tries that have been formed over centuries are
being destroyed, sanctions are being imposed and
logistical links are being disrupted. And while the
COVID-19 pandemic was previously blamed, now
that its influence is waning and the crisis is only
worsening, there is reason to believe that the cause
of degradation lies deeper and that the process of
global decay may be quite profound [2].

The more complex the production, subject area
or industry to be automated, the more resources are
required to develop and maintain the automation
system. In order not to lose control of the process,
hie rarchical automation clusters are formed in which
competences and responsibilities are shared between
the performers. The correct division of labour ensures
an optimum production and support structure. Or-
ganisations that have been able to create such an opti-
mal structure appear to be the most efficient, have less
overhead to maintain internal processes and, as a re-
sult, make more profit. And so they are the ones who
survive. Adam Smith made this point as early as the
18th century [3]. The collapse of the global order dis-
rupts these structures, which means that the ability to
develop and maintain complex productions, including
complex modelling systems, will be greatly hampered.

Quite often, when there is an urgent need for im-
port substitution of a product, especially in a time
pressure situation, an interested party will simply
copy the product. This is the best case outcome.
Most often, a functionally limited version is creat-
ed, and it takes a long time to reach a suitable level
of quality. As a result, different industries, corpora-
tions, even businesses within industries and corpo-
rations, create their own versions of the product,
with little or no compatibility between each other.

Unfortunately, this is the trend in the develop-
ment of industry-specific CAD in our country at
present. There are many reasons for this. Let us
consider, in our opinion, the main ones.

Firstly, there is no overall management of the
development process of these systems, which could
coordinate the development of programs by dividing
responsibilities into areas of competence. For exam-
ple, the practice in the Soviet Union was to designate
a research institute as the main developer of software
for a particular area, and to coordinate the finaliza-
tion and application of the developed programs.

Secondly, more often than not, companies inter-
ested in import substitution of their CAD systems
either develop them themselves, having high com-
petence in their subject area but low in software
development, or (much less frequently) outsource
development to professionals who have competence
in software development but no competence in the
subject area. The latter option requires well-orga-
nized client-executor interaction in the development
process, which is not always possible. The result is
either a functionally complete product with poor
code quality, which is usually brought to an accep-
table state, but further development becomes dif-
ficult, or a product of more or less quality in terms
of the software component, but which does not fully
solve the customer’s tasks and also requires revision.

This paper proposes an approach to the allocation
of responsibilities according to the competencies of the
participants, not only to enable the development of soft-
ware of high quality in all respects, but also to enable
the development of a product that has the potential to
outperform its substitute analogues by a wide margin.

Separation of competence and responsibility

Fig. 1 shows the schemes for abstract development
with incomplete competencies described above.

This diagram is based on a UML (Unified Mo-
deling Language) notation variant diagram [4]. The
system boundary has been removed, and instead the
competence boundaries of the participants are shown
as rectangles with rounded corners. The competence
boundaries circumscribe both the participant and the
action (function) within that competence and for the
performance of which the participant is responsible.

Fig. 1 shows that both options are incomplete in
terms of the competence of the participant in rela-
tion to the function they perform — these functions
are outside their competence. To solve the problem
of incomplete competence there is a simple trick:
allocating an additional function for which both
participants have competences.

Fig. 2 shows the competence diagram, which intro-
duces the function of forming domain-specific tools —
software components that, on the one hand, simplify
the work of a specialist in developing a model of their
subject area and, on the other hand, allow this work to
be done autonomously from the software developer. It
is now the responsibility of each participant to carry out
their own work within their area of expertise.

The action of "developing domain-specific tools"
is within the area of competence and responsibility

565Мехатроника, автоматизация, управление, Том 23, № 11, 2022

of both participants in the work. This means they
must somehow separate and regulate responsibilities
within this function.

This technique is widely used in information
technology, but it is often forgotten when planning
the implementation of complex software systems.
However, it is in the development of complex mo-
dels that the division of competence and responsi-
bility is most effective.

Adaptive modelling system

The Adaptive Modelling System (AMS) provides
an original and unique toolkit that allows the deve-

lopment of domain-specific languag-
es (DSL) that are more natural for
experts in the respective subject areas
to describe their domain models [5].

Fig. 3 (see the second side of the
cover) shows the interface of the
AMS when working with a model de-
scribed by a system of ordinary dif-
ferential equations, in the example,
the Lorentz attractor is presented. It
can be assumed that both DSLs for
describing dynamical systems and vi-
sualization tools that allow the con-
struction of graphs and state change
diagrams of a dynamical system can
be used to describe many aspects of
modelling more complex systems in
various subject areas.

This screenshot shows the operation with a pro-
totype AMS developed at the Faculty of the CS6 at
the Bauman Moscow State Technical University 6].

Separately, it is important to note that an AMS
should have an open software architecture in order to
minimize the risks associated with the development
and maintenance of DSLs and visualization tools [7].
Fig. 4 shows a diagram of the system components to
allow for extensibility of the AMS architecture.

Let us take a closer look at some of the components.
Unified means of working with DSL. This com-

ponent is the service in which the AMS business
logic is implemented. This service provides several
APIs (Application Programming Interface):

The DSL API is a set of DSL interfaces that allow
you to load extensions, grammars, perform syntac-
tic and semantic analysis (including providing syntax
highlighting information, remarks and errors), run
the model for execution, debug the model, etc.

The BNF & Interpreter API is a set of interfaces
provided to connect extensions and support the in-
terpretation of the DSL.

The Module API is a set of interfaces that al-
lows modules implemented in compiled languages
(C, C++, FORTRAN, etc.) to be connected for use
in the underlying AMS language and in the DSL.

Integrated development environment. This compo-
nent uses the "Unified means of working with DSL"
service to generate models, run them, debug them,
etc., and also provides a Visualizer API that allows the
connection of external graphical extensions.

External graphical extensions should allow, for
exam ple, forming the text of a model from a graphical

Fig. 1. Schemes with incomplete competence: incomplete competence in software devel-
opment for a subject area specialist (a); incomplete competence in developing models for
a subject area for a software developer (b)

Fig. 2. Scheme of division of responsibility according to competences

566 Мехатроника, автоматизация, управление, Том 23, № 11, 2022

constructor and interacting with it. For example, you
can automatically generate a diagram of an algorithm
or assemble an algorithm from the graphical elements
of a flowchart, which can be very visual, including
when debugging the application, and useful in training.

The imperative of a domain-specific language

The importance and primacy of the use of DSL in
the development of the final product of a subject area
is due to the several advantages that this approach
offers. Among these advantages is the ability to use
versatile visualization tools, as described above.

Another advantage is the ability to easily work col-
laboratively with version control tools and code repo-
sitories, as well as using modern tools such as continu-
ous integration and many others associated with it.

Parallel to the development and maintenance
of DSLs, visualisation tools can be developed and
maintained based on the code structure written
using the DSL. That is, the code is the primary de-
scription of the subject area, and schemes and dia-
grams are the graphical interpretation of the code.
Moreover, a schema can be edited, which will be
reflected in the code structure. Such a division is
used in many subject areas and has shown its con-
sistency, having stood the test of time.

Fig. 5 and Fig. 6 (see the second side of the cover)
show examples of schematics when building an ima-
ge processing structure using shaders in Blender [8],
as well as a schematic description of an electrical
circuit using the System Verilog [9]. Behind a cowl
of work with the models in these systems the primary

domain-specific language of the description of these
models hides. At the same time, the given schemes
are iterative, allow changing parameters of elements,
running and debugging of models.

As another example of a successful implementa-
tion of the separation of the linguistic and graphical
components of modelling, universal modelling sys-
tems such as MATLAB, Modelica and many others,
which have a basic language name in their names,
but are often associated specifically with graphical
tools that allow visualization of models.

It is also important to note a feature of the lan-
guage implementation of a model, such as its great
generality. In a domain-specific language, it is usu-
ally possible to describe a complex model that can-
not be represented in graphical form. This diversi-
fies the process of developing complex models.

Modern code editing tools allow one to perform
not only lexical and syntactic analysis and highlight
structure or errors directly when typing or modi-
fying code, but also to perform semantic analysis
from a domain-specific perspective, which leads to
the identification of a certain class of problems at
a very early stage of model formation [10].

Division of competence when working
with industry-specific CAD

Let us return to competence diagrams. Fig. 7
shows a competency diagram for the use of an AMS
in a specific domain.

This diagram has more participants and more
functions that are specific to the implementation of

Fig. 4. Diagram of the components of the AMS open software architecture

567Мехатроника, автоматизация, управление, Том 23, № 11, 2022

CAD for a particular industry. Let us take a more
detailed look at the diagram.

The AMS developer is responsible, within his
area of expertise, for the development of the AMS,
universal solutions, and shares the development of
industry extensions with the industry automation
specialist. Next, the industry standards specialist

is involved, using the AMS and industry-specific
extensions to build the industry standards base. Fi-
nally, the industry design and simulation specialist
performs production design tasks using the AMS,
the industry extensions and the standards database.

The diagram shown in Fig. 7 is an example, in
a particular case there may of course be different layers
and sequences of interaction. In this case it is impor-
tant to show how the use of the division of competence
and responsibility can work in complex domain-speci-
fic, simplifying the interaction between participants
and ultimately improving the quality of their work.

As shown, the AMS developer generates some
universal extensions that can be used in different
subject areas and industries. Fig. 8 shows a diagram
of AMS components, both with universal exten-
sions and with extensions for domain-specific.

Responsibility management
in multi-domain-specific cooperation

Using an AMS as a common platform for the
development of industry-specific CAD and simula-
tion systems has a very important advantage: the
compatibility of extensions for different subject areas.
This makes it possible to build models using exten-
sions from related industries.

Fig. 9 shows a diagram of the division of com-
petences in a two-domain cooperation. Of course,
there may be other options for cooperation, inclu-
ding more complex and multi-domain cooperation.

Fig. 7. Using an AMS in production design and modelling

Fig. 8. Component enlargement diagram of AMS com-
ponents with universal extensions and domain-specific
extensions Fig. 9. Using industry extension (A) in industry design and modelling (B)

568 Мехатроника, автоматизация, управление, Том 23, № 11, 2022

Possibility of connecting external systems

What if there is some modelling or design sys-
tem, developed independently of the AMS, that
needs to be used to extend the production model.
In this case, much depends on the software archi-
tecture of the external solution.

Fig. 10 shows a component diagram with an ex-
tension-adapter, which allows an external system to
be connected to the AMS via its API and to do de-
sign work together. However, the feasibility of such
a solution is highly dependent on the implementa-
tion of the specific external software system.

Analogues of an adaptive modelling system

The main function of an AMS is to be able to
work with many domain-specific languages built on
the basis of a base language. Thus, the set of DSL in
AMS is a hierarchy of dialects of the basic language
that have semantic features, i.e. extending the basic
operational semantics. In order to optimally imple-
ment this approach, substantial unification of lexis,
syntax and semantics within AMS is used. Such
unification largely contradicts the classical notion
of compiler construction. For example, the imple-
mentation of the built-in generator of compilers on
the basis of the common parsing automaton for au-
tomatically generated grammar tables [7] was criti-
cized by Nicholas Wirth in his work "Building com-
pilers" [11] and suggested using common external
generators, e.g., YACC [12], Bison [13] or others.
However, in the context of a compact description of
a potentially large number of DSL dialects and their
frequent refinement, the canonical approach seems
unnecessarily cumbersome.

Basically, for this reason there are no direct coun-
terparts to AMS. However, there are some develop-
ments in which similar ideas and trends can be seen.

For example, the Russian system AnyLogic [14]
is software for simulating business processes in lo-

gistics, healthcare, manufacturing and
ban king, as well as any other processes
that can be represented as a sequence
of ope rations. The tool has a modern
graphical interface and allows the use of
Java language for model development.

We can also note the trend towards
unification of compiler construction
on the part of universal languages. Ex-
amples are GCC (GNU Compiler Col-
lection) and LLVM (Low Level Virtual

Machine). The principle of work of these program
infrastructures is the following: on the frontend (the
upper level of the compiler) the source program code
is read, its parsing is performed and an abstract syn-
tax tree is generated and on the backend (the lower
level of the compiler) this tree is converted into some
intermediate representation which is optimized and
translated into an assembly language program [15].
This approach allows compilers from many program-
ming languages to be implemented on the frontend.
All these compilers form an intermediate representa-
tion and further processing is unified.

In GCC the abstract syntax tree is converted to
RTL (Register Transfer Language) which is an in-
termediate internal representation close to an as-
sembly language, whereas in LLVM there is an in-
termediate assembly language which can be trans-
formed at compile time [16].

There are also alternative solutions for compiler
and DSL implementations that offer additional fea-
tures and extensions.

For example, Xtext, a framework for developing
programming languages and DSL, allows genera ting
not only a parser and a compiler, but also a fully
customizable Integrated Development Environment
(IDE). The DSL is described in Xtext with Java
inserts, and the source code is created in Java [17].

Tree-sitter is a tool for creating parsers in C from
a grammar description described in a language re-
sembling RBNF (extended Backus-Naurus form).
This tool allows you to build a specific syntax tree
from a source file and efficiently update it when
editing the source file [18]. This system is rather
limited: for example, there is no possibility to put
semantic inserts in the grammar description.

Domain-Specific Language Designer is a dedica-
ted Visual Studio solution for DSL design. Microsoft
offers creation and editing of DSL definition by means
of graphical interface: elements and relations in the
model of the subject domain are shown on the model
schema. The code generator takes this definition as
input and creates C# source code as output [19].

Fig. 10. Connecting an external system via an extension adapter

569Мехатроника, автоматизация, управление, Том 23, № 11, 2022

MPS (Meta Programming System) is a metapro-
gramming system developed by JetBrains [20]. It
implements the language-oriented programming
paradigm [21], is a language development environ-
ment and at the same time an IDE for languages
under development.

The presented solutions are designed for desig-
ning universal programming languages without ta-
king into account the peculiarities of a particular
subject area, or for designing DSL, but with rather
limited functionality. In general, the prevailing view
in the information technology community is that
"DSL is a programming language with limited ex-
pressive power, oriented towards a specific subject
area" (Martin Fowler) [22]. In reality this may not
be the case. A DSL in an adaptive modelling system
is a programming language which extends the se-
mantics of a basic generic language. More often than
not, the semantics of the underlying language will be
restricted in a particular DSL, but this is not man-
datory. The basic AMS language, in turn, should be
constructed in such a way that its semantics can be
easily extended — a very interesting, but far beyond
the scope of this article, topic for discussion.

Ideas related to the implementation of a model-
ling system that allows combining different subject
areas are also emerging in the Western scientific
community. Thus, a similar approach in decision-
making systems is proposed, which may be useful
for use in AMS as well [23], [24].

Conclusion

The use of an adaptive modelling system as
a single platform for branch CAD will not only
provide a high-quality software component for au-
tomating the domain-specific by dividing the com-
petence and responsibility of the implementers, but
will also make it easier and faster to design complex
production at the interface between industries.

The use of AMS will also avoid the costs of de-
signing complex productions associated with the
trend towards simplification and atomization of soft-
ware developed in our country, in the face of sanc-
tions and the degradation of global connectivity.

References

 1. Glazyev S. The last round of liberal globalization [Elec-
tronic resource], available at: https://izborsk-club.ru/11870 (access
date: 07.07.2022) (in Russian).

 2. Smirnov G. The Undefiled Ways of Globalisation [Elec-
tronic resource], available at: https://www.kommersant.ru/doc/
5295109 (access date: 07.07.2022). (in Russian).

 3. Smith A. (1776). An Inquiry into the Nature and Causes
of the Wealth of Nations [Electronic resource], available at:
https://books.google.ru/books?id=C5dNAAAAcAAJ (accessed
07.07.2022).

 4. Unified Modeling Language [Electronic resource], avai-
la ble at: https://www.omg.org/spec/UML (accessed 07.07.2022).

 5. Ivanova G. S., Zhiltsov A. I., Fetisov M. V., Chulin N. A.,
Yudin A. E. Adaptive Modelling System, Automation. Modern
Technologies, 2020, no. 11, pp. 500.

 6. SIMODO in Bauman Moscow State Technical University
repository [Electronic resource], available at: https://bmstu.codes/
lsx/simodo (access date: 07.07.2022).

 7. Ivanova G. S., Fetisov M. V., Malkina T. A., Raldu-
gina A. V. Unification of work with subject-oriented languages and
open software architecture in adaptive simulation system, Dyna-
mics of Complex Systems, 2021, vol. 15, no. 3, pp. 36—47.

 8. Blender [Electronic resource], available at: https://www.
blender.org (accessed 01.06.2021).

 9. 1800-2017 — IEEE Standard for SystemVerilog--Unified
Hardware Design, Specification, and Verification Language
[Electronic resource], available at: https://ieeexplore.ieee.org/doc-
ument/8299595 (accessed 07.07.2022).

 10. Ivanova G. S., Fetisov M. V. The concept of contract
management in the base language of the adaptive modeling sys-
tem, 3rd International Conference on Control Systems, Mathemati-
cal Modeling, Automation and Energy Efficiency (SUMMA), IEEE,
2021, pp. 833—836.

 11. Wirth N. Building compilers, Moscow, DMK Press, 2016
(in Russian).

 12. BYACC — Berkeley Yacc — Generate LALR(1) parsers
[Electronic resource], available at: https://invisible-island.net/
byacc/byacc.html (accessed 04.11.2019).

 13. GNU Bison [Electronic resource], available at: https://
www.gnu.org/software/bison (accessed 04.11.2019).

 14. AnyLogic [Electronic resource], available at: https://www.
anylogic.ru (accessed 01.06.2021).

 15. Griffiths A. GCC. A handbook for users, programmers,
and system administrators, Diasoft. 2004.

 16. Brown A., Wilson G. LLVM (Chris Lattner), The Archi-
tecture of Open Source Applications, 2011.

 17. Xtext [Electronic resource], available at: https://www.
eclipse.org/Xtext/index.html (accessed 07.07.2022).

 18. Tree-sitter [Electronic resource], available at: https://tree-
sitter.github.io/tree-sitter (accessed 07.07.2022).

 19. Domain-Specific Language Designer [Electronic resource],
available at: https://docs.microsoft.com/ru-ru/visualstudio/model-
ing/modeling-sdk-for-visual-studio-domain-specific-languages
(accessed 07.07.2022).

 20. MPS — Meta Programming System [Electronic re-
source], available at: https://www.jetbrains.com/ru-ru/mps (ac-
cessed 07.07.2022).

 21. Dmitriev S. Language-oriented programming [Electronic
resource], available at: http://rsdn.org/article/philosophy/LOP.xml
(access date: 07.07.2022).

 22. Fowler M., Parsons R. Domain Specific Languages,
ADDISON-WESLEY, 2010.

 23. Roci M., Salehi N., Amir S. et al. Towards circular manu-
facturing systems implementation: A complex adaptive systems
perspective using modelling and simulation as a quantitative anal-
ysis tool, Sustainable Production and Consumption, 2022, vol. 31,
pp. 97—112.

 24. Roci M., Salehi N., Amir S. et al. Multi-method simula-
tion modelling of circular manufacturing systems for enhanced
decision-making, MethodsX, 2022, vol. 9, article 101709.

