
507Мехатроника, автоматизация, управление, Том 23, № 10, 2022

Методы мультиагентного обучения с подкреплением являются одним из новейших и активно развивающихся 
направлений машинного обучения. Среди методов мультиагентного обучения с подкреплением одним из наиболее 
перспективных является метод MADDPG, достоинством которого является высокая сходимость процесса обучения. 
Недостатком метода MADDPG является необходимость обеспечения равенства числа агентов N на стадии обучения 

Abstract

Multi-agent reinforcement learning methods are one of the newest and actively developing areas of machine learning. Among the 
methods of multi-agent reinforcement learning, one of the most promising is the MADDPG method, the advantage of which is the 
high convergence of the learning process. The disadvantage of the MADDPG method is the need to ensure the equality of the number 
of agents N at the training stage and the number of agents K at the functioning stage. At the same time, target multi-agent systems 
(MAS), such as groups of UAVs or mobile ground robots, are systems with a variable number of agents, which does not allow the 
use of the MADDPG method in them. To solve this problem, the article proposes an improved MADDPG method for multi-agent 
reinforcement learning in systems with a variable number of agents. The improved MADDPG method is based on the hypothesis that 
to perform its functions, an agent needs information about the state of not all other MAS agents, but only a few nearest neighbors. 
Based on this hypothesis, a method of hybrid joint / independent learning of MAS with a variable number of agents is proposed, which 
involves training a small number of agents N to ensure the functioning of an arbitrary number of agents K, K> N. The experiments 
have shown that the improved MADDPG method provides an efficiency of MAS functioning com-parable to the original method with 
varying the number of K agents at the stage of functioning within wide limits.

Keywords: multi-agent systems, machine learning, multi-agent reinforcement learning, collaborative learning, independent 
learning, variable number of agents
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Introduction

With the development of reinforcement lear ning 
methods more and more com-plex problems fall 
into the area of interest of researchers. One of the 
newest and actively developing areas of reinforce-
ment learning is multi-agent reinforcement learning 
MDRL multi-agent systems (MAS). The interest in 
the MAS is due to two rea-sons: 1) economic effi-
ciency of using, instead of one complex agent, a set 
of technically simpler agents with comparable total 
productivity; 2) higher efficiency of decentralized 
problem-solving using MAS in comparison with 
similar centralized methods [1—3].

MAS find application in such areas [4] how pro-
duction [5], transportation, smart homes, robotics 
[6—9], aviation, infrastructure facilities, medicine 
[10] and etc. An important problem in the develop-
ment of MAS is the ambiguity and nontriviality of 
the synthesis of the policy of behavior of individual 
agents according to the specified target indicators of 
the MAS [11—13]. At the same time, single-agent 
reinforcement learning SDRL has established itself 
as a powerful and versatile tool for solving intel-
lectual problems at a level comparable to that of a 
person [13—15]. Taken together, these factors de-
termine the relevance of development single-agent 
deep reinforcement learning (SDRL) for use in 
MAS in the form of MDRL.

The two main challenges of MDRL are lear ning 
convergence and scalability [16]. The scalability 
problem also includes the problem of the possibility 
of dynamically changing the number of agents during 
the operation of the MAS. The problem of the possi-
bility of dynamically changing the number of agents 
is of particular importance in the context of mo-
bile MAS. Mobile MAS such as UAV groups [17] 
or ground mobile robots, in comparison with other 
types of MAS, are characterized by functioning in 
a non-deterministic environment with a relatively 

high probability of failure of individual agents, un-
stable bandwidth and topology of communication 
channels [18] and etc. Also, in mobile MAS, higher 
requirements for the reliability of control methods 
[19, 20]. Calculation error [21, 22] can damage and 
disable mobile MAS agents. These factors lead to 
the fact that mobile MAS in the general case can be 
considered as MAS with a variable number of agents.

To ensure the operation of the MAS with a vari-
able number of agents, the article proposes an im-
proved method of deep multi-agent learning with 
reinforcement based on the gradient of the deter-
ministic policy MADDPG. The article is structured 
as follows. Section 2 reviews the existing methods 
and problems of MDRL, substantiates the use of the 
MADDPG method as a prototype, and describes 
its main features. Section 3 describes the proposed 
improved MADDPG method. Section 4 presents 
experimental results confirming the effectiveness of 
the proposed improved MADDPG method.

Target setting

The target set in this paper is to develop a sca-
lable MDRL method based on the MADDPG. The 
developed method must be able to work with a vari-
able number of agents. In this case, the computa-
tional complexity should grow no more than lin-
early in a wide range of the number of MAS agents.

Current state of the problem

The subject of this work is such a type of MOP 
as learn cooperation [16]. The current section ex-
amines various approaches and methods of teaching 
cooperation from the point of view of their effec-
tiveness, mechanisms for overcoming the nonstatio-
nary of the environment in the process of learning 
and functioning, and the possibility of working with 

и числа агентов K на стадии функционирования. В то же время целевые мультиагентные системы (МАС), такие как 
группы БПЛА или мобильных наземных роботов, являются системами с переменным числом агентов, что не позволя-
ет применять в них метод MADDPG. Для решения данной проблемы в статье предложен усовершенствованный метод 
MADDPG для мультиагентного обучения с подкреплением в системах с переменным числом агентов. Усовершенство-
ванный метод MADDPG базируется на гипотезе о том, что для выполнения своих функций агенту нужна информа-
ция о состоянии не всех прочих агентов МАС, а только нескольких ближайших соседей. На основе данной гипотезы 
предложен метод гибридного совместного/независимого обучения МАС с переменным числом агентов, который пред-
полагает обучение некоторого небольшого числа агентов N для обеспечения функционирования произвольного числа 
агентов K, K > N. Проведенные эксперименты показали, что усовершенствованный метод MADDPG обеспечивает 
сопоставимую с оригинальным методом эффективность функционирования МАС при варьировании числа K агентов 
на стадии функционирования в широких пределах.

Ключевые слова: мультиагентные системы, машинное обучение, мультиагентное обучение с подкреплением, со-
вместное обучение, независимое обучение, переменное число агентов
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a variable number of agents. This paper discusses 
MOS methods for cooperative MAS without expli cit 
pre-organized or self-organizing communication, 
designed to solve spatially distributed problems.
A generalized example of such a task is given in [23] 
under the name "Cooperative navigation", is shown 
on Fig. 1.

The problem includes an MAS of K agents (green 
circles) and an environment in which there is a set 
of K target objects (black crosses). The goal of MAS 
agents in this task is to occupy all target objects.

Let us introduce the following notation to de-
scribe the interaction between the MAS and the 
environment:

s — state of the environment, which also includes 
the state of agents s ∈ S, where S is set of possible 
states of the environment;

oi — observation state of the environment avai-
lable i-th agent, oi ∈ Oi where Oi is the set of pos-
sible observable states of the environment of the 
i-th agent;

ai — action, undertaken by the i-th agent, ai ∈ Ai 
where Ai — set of possible actions of the i-th agent;

ri ∈ R — reward, received by the i-th agent for 
performing an action ai in a state of environment s, 
and the transition of the environment to the state s′;

πi — the policy of the i-th agent used by the i-th 
agent to transform the current observable state of 
the environment oi in the probability distribution of 
the action to be taken ai and parameterized by some 
vector of parameters :

iπθ

 : [0;1],i i iO Aπ × →  (1)

μi — notation for deterministic policy πi:

 : {0;1},i i iO Aμ × →  (2)

Qi — value function used by the i-th agent to 
estimate the expected value of the future cumula-
tive reward when performing an action ai in the 
observed state of the environment oi, and param-
eterized by some vector of parameters :

iQθ

 : .i i iQ O A× → �  (3)

According to the concept of reinforcement lear-
ning used by a policy agent πi and the value func-
tion Qi are approximations of some ideal policy *

iπ  
and/or ideal value function *.iQ  In the process of 
training, the optimization of the parameter vectors 
takes place 

iπθ  and 
iQθ  to improve the accuracy 

of the approximation. Deep reinforcement learn-
ing uses artificial neural networks as approximators 
(ANNs), and as vectors of optimized parameters 

iπθ  and 
iQθ  the weights of the respective ANNs.

Methods MDRL can be divided according to the 
object of approximation into value-based methods 
and policy gradient methods, under the conditions 
of training on methods of joint training of agents 
and methods of independent training of agents. In 
value methods, the object of approximation is the 
value function Qi, in gradient methods, the object 
of approximation is the policy πi without/with value 
function Qi. Value-base methods [24—31] presen-
ted mainly by methods based on the learning algo-
rithm DQN [14] and its modifications DRQN [32]. 
The main disadvantages of value-based methods 
are the low learning efficiency compared to gradi-
ent methods. [33, 34] and focus on working with 
discrete action space Ai. An example of a gradient 
method for independent learning of agents is the 
method FTW [35]. The FTW method is an adap-
tation of the SDRL method based on the actor-
learner structure IMPALA [36]. In article [23] it 
is shown that adapted gradient SDRL methods in 
multi-agent problems have weak convergence. This 
phenomenon is because the reward received by 
the i-th agent ri depends not only on his actions 
ai also from the actions of other agents {aj | j ≠ i}, 
therefore, the probability of obtaining the correct 
direction of the gradient with an increase in the 
number of agents decreases exponentially. To solve 
this problem at work [23] proposed a gradient meth-
o d for collaborative learning of MADDPG agents 
(Multiagent Deep Deterministic Policy Gradient), 
DDPG-based (Deep Deterministic Policy Gradi-
ent) [37]. The DDPG method is based on the use of 
two ANNs. First ANNs – actor, used to approxi-
mate deterministic policy μi another ANNs. critic, 

Fig. 1. An example of a spatially distributed problem [23]
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used to approximate the value function Qi. In the 
MADDPG method, each agent uses its own ANNs 
pair actor and critic. At the entrance of the ANNs 
critic i-th agent approximating the value function 
Qi, not only action is given ai i-th agent, but also 
the actions of all other agents {aj | j ≠ i}. An impor-
tant disadvantage of the MADDPG method is the 
need to ensure equality of the number of agents at 
the training stage. N and the number of agents at 
the stage of functioning K.

Based on the analysis of publications, the follow-
ing conclusions can be drawn. The MDRL value 
methods are applicable only for problems with a 
discrete set of actions. Gradient MDRL methods 
with collaborative learning of agents are applicable 
to problems with a continuous set of actions and 
have good convergence, but they have poor scala-
bility and fault tolerance. Gradient MDRL methods 
with independent learning of agents have good 
scalability and fault tolerance, however, they have 
problems with overcoming the nonstationary of the 
environment [16].

The listed features of gradient MDRL methods 
with joint and independent training of agents de-
termine the relevance of the development of hybrid 
gradient MDRL methods with high convergence, 
scalability, and fault tolerance. In this paper, we 
propose such a hybrid method based on the MAD-
DPG method and the concept of parameter separa-
tion. Details of the implementation of the parame-
ter sharing concept in the enhanced MADDPG 
method are described in the next Section.

MADDPG method

In this work, the MADDPG method is taken 
as a basis for improvement in view of its following 
advantages [23]:

1) versatility of work in cooperative and competi-
tive environments;

2) efficiency in comparison with other gradient 
methods of joint MDRL;

3) the choice of actions can be carried out from 
a continuous set of possible values.

The prototype of the multi-agent MADDPG 
method is the single-agent DDPG method. [37]. 
The essence of the DDPG method is as follows. 
Let there be a deterministic policy μ(o|θμ) making 
decisions by an agent to take an action a in the ob-
served state of the environment o, parameterized by 
a parameter vector θμ. When describing the single-
agent DDPG method, the subscript "i", indicating 

the agent number, not used in values. The DDPG 
method is based on the optimization of the param-
eter vector θμ with the aim of maximizing the ex-
pected total discounted remuneration J. New value 
of the vector of parameters 1t +

μθ  at each optimiza-
tion iteration is determined by the formula:

 �1 ,t
t t J

μ

+
μ μ θ

θ = θ + α∇  (4)

where t
μθ  — the current value of the parameter 

vector θμ; α — optimization step size; t J
μθ

∇  — 
gradient J over the vector of parameters ;t

μθ
�

t J
μθ

∇  — estimated gradient value .t J
μθ

∇
According to the policy gradient theorem [38], 

provided that the medium is partially observable for 
the gradient t J

μθ
∇  the following relation is true:

 

�
, ( | )

, ( | )

( , | )

( , | )

( | ) ,
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⎡ ⎤
∇ ≈ ∇ θ =⎢ ⎥

⎢ ⎥⎣ ⎦
⎡= ∇ θ⎢⎣

⎤×∇ μ θ ⎥⎦

∼ ∼

∼ ∼

E

E  (5)

where [ ]
ts p

xμ∼E  — mathematical expectation 
of a quantity x provided that the state of the 
environment st has distribution p, policy-driven μ;

( , | )t
QQ o aμ θ  — value function Q, used by an agent 

at a point in time t when following a policy μ, 
taking as arguments the state of the environment o 
observed by the agent and the action taken by the 
agent a, parameterized by a parameter vector ;t

Qθ  
( )| t

ta o μ∼ μ θ  means the agent chooses an action a 
according to the distribution returned by |( .)t

to μμ θ
Ideal value function *Qμ  with full observability 

of the environment (o ≡ s) is given by the Bellman 
equation:

 
1

* *
1 1,

( , ) [ ( , ( ))],
t t

t t t t tr s E
Q s a r Q s sμ

+
μ μ + += + γ μ∼E  (6)

where 
1,

[ ]
t tr s E

xμ
+ ∼

E  — mathematical expectation of 
a quantity x subject to receiving the award rt and the 
transition of the environment to some next state st+1 
according to the distribution returned by the math 
entity E when using the policy μ; E — a mathematical 
entity describing the functioning of an environment, 
usually described as a mathematical model or an 
algorithm for the dynamics of the environment; 
γ ∈ [0;1] — a discounting parameter reflecting a 
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decrease in the importance of a subsequent reward 
rt+1 compared to the current award rt.

In DDPG method for policy approximation μ 
and value functions Qμ two ANNs are used, re-
spectively named actor and critic. The weights of 
the ANNs actor act as a vector of parameters θμ 
policy μ, and the ANN weights critic act as a vector 
of parameters θQ value functions Qμ. During train-
ing, optimization of the vector of parameters θμ is 
carried out according to the formula (4). Optimi-
zation of parameter vector values θQ is performed 
by a gradient machine learning method in order to 
minimize the following loss function:

2
, ,

( ) [( ( , | ) ) ],
t t t

t
Q t t Q ts p a r E

L Q o a yμ μ μμ
θ = θ −∼ ∼ ∼E  (7)

 1 1( )( , ) , | ,t
t t t t t Qy r s a Q o aμ

+ += + γ θ  (8)

where yt — expected total discounted remuneration.
The MADDPG method is a multi-agent exten-

sion of the DDPG method. For each i-th agent 
from N agents MAS uses two ANNs (Fig. 2, see 
the second side of the cover) for policy approxima-
tion μi and value functions Qi — actor and critic, 
respectively. At the stages of learning and function-
ing i-th agent uses decision policy μi for transform 
the current observable state of the environment oi 
in the action taken ai. Value functions Qi the i-th 
agent is used only at the training stage to assess the 
usefulness of the action taken by the i-th agent ai.

In contrast to the single-agent variant of the 
value function Q(o, a) the DDPG method, which 
takes as an argument the action a of one agent, a 
multi-agent value function Qi(oi, ai) method MAD-
DPG takes as an argument the actions of all agents:

 { | 1, }.ia a i N= =  (9)

The following is a more rigorous mathematical 
description of the method, MADDPG. Consider a 
problem with N agents whose policies μi, 1,i N=  
parameterized by parameter vectors .

iμθ  Optimiz-
ing parameter vectors 

iμθ  using the gradient rise 
method, it is carried out according to the formula:

 �
�

1 ,ti i
i

t t
iJ

μ

+
μ μ θ

θ = θ + α∇  (10)

where Ji — expected total discounted remuneration 
of the i-th agent.

Gradient �
�

t
i

iJ
μθ

∇  calculated by the formula:

�
� , ( | )

� ( , | )

( | ) ,

t i ti i
i t i i t i

ii
t

t
i a i Qs p o o a o

t
i

s s

J Q o a

s

μ
μ μ

μ

μθ = μ θ

θ μ
=

⎡
∇ ≈ ∇ θ ×⎢

⎣
⎤×∇ μ θ ⎥⎦

∼ ∼
E

 (11)

where 
i

t
Qθ  — vector of parameters of the value 

function 
i

Qμ  now t.

i
Qμ  updated to minimize the loss function ( ):

iQθL

 2
, ,

( )

[( ( , | ) ) ],

i

i i it t i t

Q

t
t t Q ts p a r E

L

Q o a yμ μμ

θ =

= θ −∼ ∼ ∼E  (12)

 1 1( , ) ( , | ).
i i

t
t t t t t Qy r s a Q o aμ + += + γ θ  (13)

In the article [23] the effectiveness of the MAD-
DPG method was investigated when working with 
a fixed number of agents, the same for the training 
stage and for the execution stage. As the authors 
note, one of the further directions in the develop-
ment of the method is its development for working 
with a variable number of agents.

Advanced MADDPG Method

The advanced MADDPG method differs from 
the original method in the following modifications.

1. At the training stage, N agents are used, at 
the functioning stage, an arbitrary number of K > N 
agents.

2. At the stage of functioning, a "scope" is intro-
duced for agents. The state of the environment oi 
observed by the i-th agent includes the state of only 
those agents that fall into this scope. Let’s desig-
nate the field of visibility, determined by objective 
reasons, such as the range of the communication 
channel or the range of visual observation, as the 
natural field of visibility. If more than N – 1 agents, 
the method uses an artificial scope, which includes 
N – 1 nearest agents (Fig. 3, a, see the second side 
of the cover). If the natural scope falls M < N – 1 
other agents as states (N – 1) – M of unobserved 
agents, their last observed state is used (Fig. 3, b, 
see the second side of the cover).

3. According to the concept of parameter sha-
ring, the same decision-making policies are used for 
all agents. μi = ... = μN = μ and the value function 
Q1 = ... QN = Q (Fig. 4, see the second side of the 
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cover). At the training stage, one ANN actor and 
one ANN critic are used for all agents. At the stage 
of functioning, all agents use identical copies of the 
actor ANN.

Expressions (10)—(13), taking into account the 
listed features, take the following form. Common 
policy for all agents μ parameterized by the parame-
ter vector θμ. Parameter vector optimization θμ uing 
the gradient rise method, it is carried out according 
to the formula:

 �1 ,t
t t

iJ
μ

+
μ μ θ

θ = θ + α∇  (14)

where Ji — expected total discounted remuneration 
of the i-th agent.

Gradient �,t iJ
μθ

∇  calculated by the formula:

�
, ( | )

, ( , | )

( | ) ,

t t
t i i t i

ii
t

t
i a i Qs p o o a o

t
i

s s

J Q o a

s

μ
μ μ

μ

μθ = μ θ

θ μ
=

⎡
∇ ≈ ∇ θ ×⎢

⎣
⎤×∇ μ θ ⎥⎦

∼ ∼
E

 (15)

where t
Qθ  — vector of parameters of the value 

function Qμ at the moment t.
Qμ updated to minimize the loss function ( ):QθL

2
, ,

( ) [( ( , | ) ) ],
t t t

t
Q Q ts p a r E

L Q o a yμ μμ
θ = θ −∼ ∼ ∼E  (16)

 1 1, () , | ).( t
t t t t t Qy r s a Q o aμ + += + γ θ  (17)

The modifications of the MADDPG method 
proposed in the work lead to the following results:

1. Computational complexity of each training 
step with an equal number of agents being trained 
N remains the same. The number of ANN actor 
and critic decreases by N times, while the num-
ber of acts of optimization of the weights of these 
ANNs increases by the same number of times at 
each learning step.

2. The introduction of the scope allows us to re-
duce the task of ensuring the functioning K agents 
to the task of ensuring the functioning N agents. As 
follows from the results of experimental studies in 
the next section, it is enough to conduct training 
N < K agents, in contrast to the original method, 
where N = K.

3. Because N < K, in the improved MADDPG 
method, it will be possible to significantly reduce 
the computational complexity of MAS training 
to ensure the functioning K agents. Consider the 
factors affecting the computational complexity of 
one step of training when switching from training 

N1 agents for training N2 agents in the MADDPG 
method with N2 > N1:

1) the number of ANN inputs actor and critic, 
which are responsible for information about other 
agents, increases by N2/N1 times, which leads to 
a quadratic increase in the number of connections 
in the ANN actor and critic and a corresponding 
increase in the number of necessary computational 
operations;

2) the input data space increases proportionally 
N2/N1, which may require an increase in the num-
ber of perceptrons in individual layers of the ANN 
and lead to an additional abrupt increase in the 
number of computational operations;

3) the number of ANNs actor and critic increases 
by N2/N1 times, which leads to a linear increase in 
the required memory for storing the ANN weights 
actor and critic.

Taken together, these factors lead to a non-linear 
increase in the computational complexity of each 
training step.

4. In the analogous method, in the learning 
process, agents "get used" to each other’s beha vior, 
since the input data is an ordered tuple, where in-
formation about the state of the i-th agent is in 
the corresponding i-th position of the input data. 
By using identical copies of the ANN actor, the 
impersonality of agents is achieved — one of the 
prerequisites for scalability.

Results

The results of an experimental comparison of the 
original and improved MADDPG method are shown 
in Fig. 5—7 (see the second side of the cover). Fig. 5 
shows graphs of the frequency of training steps exe-
cution on the same hardware for the original and 
improved MADDPG method with the number of 
agents being trained. N = {3;5}. The jump in the 
frequency of training steps at the initial stage is 
explained by the accumulation of data in the retry 
buffer and the absence of an optimization operation 
for the ANN weights. The graphs show approxi-
mately equal frequency of learning steps for the 
original and improved method.

Fig. 6 (see the second side of the cover) shows 
graphs of learning curves — the dependence of the 
total reward received by the MAS during an episode 
on the number of learning steps for the number of 
agents being trained N = {3;5}. As it follows from 
Fig. 6, the learning rate for the improved and origi-
nal method is approximately equal.
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Fig. 7 (see the second side of the cover) shows 
the average values of the total reward received by 
the trained MAS per episode for the original and 
improved MADDPG methods for various values of 
the number of K agents at the stage of functioning. 
For the original method, the results were obtained 
for N ≡ K. For the improved method, the results are 
given for various N.

As follows from the results, the efficiency of the 
functioning of the MAS trained using the improved 
method is comparable to the efficiency of the MAS 
trained using the original MADDPG method. In this 
case, using the improved method, it suffices to train 
the number of agents N less than the number of agents 
K at the stage of functioning for different values of K.
For example, an MAS trained using the improved 
method for N = 3 for K = {5;7} demonstrates the same 
efficiency as the original method, which requires strict 
compliance N ≡ K = 5 or N ≡ K = 7.

Conclusion

In this paper, we propose an improved multi-
agent reinforcement learning method based on the 
MADDPG deterministic policy gradient. The im-
proved MADDPG method is based on the use of 
the concept of shared parameters and the introduc-
tion of artificial scoping for agents. The obtained 
results of experimental studies have confirmed the 
following theoretical expectations:

1) with an equal number of trained agents N, 
the computational complexity of the improved and 
original MADDPG methods are the same;

2) the efficiency of training using the improved 
method of N agents for an MAS of K agents for
K > N comparable to the learning efficiency with 
the original method of K agents.

The results obtained confirm the possibility of the 
improved MADDPG method working with a vari-
able number of agents. In the future, the solutions 
proposed in this work can also be used to reduce the 
computational complexity of the original MADDPG 
method by reducing the number of trained agents N 
for a given number of K MAS agents.

References

 1. Kovács G., Yussupova N., Rizvanov D. Resource 
management simulation using multi-agent approach and semantic 
constraints, Pollack Period, 2017, vol. 12, no. 1, pp. 45—58.

 2. Darintsev O., Migranov A. Task Distribution Module 
for a Team of Robots Based on Genetic Algorithms: Synthesis 
Methodology and Testing, Proceedings of the 21st International 

Conference; Complex Systems: Control and Modeling Problems, 
CSCMP 2019, 2019, pp. 296—300.

 3. Darintsev O. V. et al. Methods of a heterogeneous multi-
agent robotic system group control, Procedia Computer Science, 
2019, vol. 150, pp. 687—694.

 4. Wang L., Törngren M., Onori M. Current status and ad-
vancement of cyber-physical systems in manufacturing, Journal of 
Manufacturing Systems, 2015, vol. 37, pp. 517—527.

 5. Munasypov R. A., Masalimov K. A. Neural network models 
for diagnostics of complex technical objects state by example of elec-
trochemical treatment process, Proceedings of the 2nd International 
Ural Conference on Measurements, UralCon 2017, 2017, pp. 156—160.

 6. Bonilla Venegas F. V., Moya M. J., Litvin A., Lukya-
nov E., Marín Pillajo L. E. Modeling and Simulation of the Robot 
Mi tsu bishi RV-2JA controlled by electromyographic signals, En-
foque UTE, vol. 9 (2), pp. 208—222.

 7. Vokhmintcev A. V., Melnikov A. V., Mironov K. V., Bur-
lutsky V. V. Reconstruction of Three-Dimensional Maps Based on 
Closed-Form Solutions of the Variational Problem of Multisensor 
Data Registration, Reports of the Academy of Sciences, 2019, vol. 484,
no. 6, pp. 672—677.

 8. Bogdanov A., Dudorov E., Permyakov A., Pronin A., Kut-
lubaev I. Control system of a manipulator of the anthropomorphic 
robot FEDOR, Proceedings of the International Conference on De-
velopments in eSystems Engineering, DeSE, 2019, pp. 449—454.

 9. Petrenko V., Tebueva F., Antonov V., Untewsky N., 
Gurchinsky M. Energy-Efficient Path Planning: Designed Soft-
ware Implementation, Proceedings of the 21st International Work-
shop on Computer Science and Information Technologies (CSIT 
2019), 2019, vol. 3, pp. 112—118.

 10. Bogdanov M., Nasyrov D., Dumchikova I., Samigullin A. 
Processing of Biomedical Data with Machine Learning, Proceedings 
of the 21st International Workshop on Computer Science and Infor-
mation Technologies (CSIT 2019), 2019, vol. 3, pp. 6—16.

 11. Petrenko V., Tebueva F., Gurchinsky M., Antonov V. A Ro-
bo tic Complex Control Method Based on Deep Reinforcement 
Learning of Recurrent Neural Networks for Automatic Harvesting 
of Greenhouse Crops, Proceedings of the 8th scientific Conference 
on Information Technologies For Intelligent Decision Making Support 
(ITIDS 2020), 2020, vol. 174, pp. 340—346.

 12. Petrenko V., Tebueva F., Antonov V., Gurchinsky M., Ry-
abtsev S., Burianov A. Cooperative Motion Planning Method for 
Two Anthropomorphic Manipulators, Proceedings of the 7th Scien-
tific Conference on Information Technologies for Intelligent Decision 
Making Support (ITIDS 2019), 2019, vol. 166, pp. 146—151.

 13. Petrenko V., Tebueva F., Pavlov A., Antonov V., Kochanov M.
Path Planning Method in the Formation of the Configuration of a 
Multifunctional Modular Robot Using a Swarm Control Strategy, 
Proceedings of the 7th Scientific Conference on Information Tech-
nologies for Intelligent Decision Making Support (ITIDS 2019), 2019, 
vol. 166, pp. 165—170.

 14. Mnih V. et al. Human-level control through deep rein-
forcement learning, Nature, 2015, vol. 518, pp. 529—533.

 15. Petrenko V., Tebueva F., Pavlov A., Svistunov N. Machine 
Learning Algorithm for Anthropomorphic Manipulator Control 
System, Proceedings of the 8th Scientific Conference on Information 
Technologies for Intelligent Decision Making Support (ITIDS 2020), 
2020, vol. 174, pp. 353—358.

 16. Hernandez-Leal P., Kartal B., Taylor M. E. A survey and 
critique of multiagent deep reinforcement learning, Autonomous 
Agents and Multi-Agent Systems, 2019, vol. 33, pp. 750—797.

 17. Pshikhopov V., Medvedev M., Medvedeva T. Terminal 
Motion Control of Multicopter Group, Proceedings of the 4th In-
ternational Conference on Control and Robotics Engineering, ICCRE 
2019, 2019, pp. 1—6.

 18. Wang H., Zhao H., Ma D., Wei J. Cyber Physical System 
Framework for UAV Communications, Electrical Engineering and 
Systems Science, 2020, pp. 1—41.



514 Мехатроника, автоматизация, управление, Том 23, № 10, 2022

 19. Yusupova N., Rizvanov D., Andrushko D. Cyber-Physical 
Systems and Reliability Issues, Proceedings of the 8th Scientific 
Conference on Information Technologies for Intelligent Decision Mak-
ing Support (ITIDS 2020), 2020, vol. 174, pp. 133—137.

 20. Fabarisov T., Yusupova N., Ding K., Morozov A., Janschek K.
Model-based stochastic error propagation analysis for cyber-
physical systems, Acta Polytechnica Hungarica, 2020, vol. 17, no. 8,
pp. 15—28.

 21. Valiev E., Yusupova N., Morozov A., Janschek K., Beyer M.
Evaluation of the Impact of Random Computing Hardware Faults 
on the Performance of Convolutional Neural Networks, Procee-
dings of the 8th Scientific Conference on Information Technolo-
gies for Intelligent Decision Making Support (ITIDS 2020), 2020,
vol. 174, pp. 307—312.

 22. Beyer M., Morozov A., Ding K., Ding S., and Janschek K. 
Quantification of the impact of random hardware faults on safety-
critical ai applications: Cnn-based traffic sign recognition case 
study, Proceedings — 2019 IEEE 30th International Symposium on 
Software Reliability Engineering Workshops, ISSREW 2019, 2019, 
pp. 118—119.

 23. Lowe R., Wu Y., Tamar A., Harb J., Abbeel P., Mordatch I.
Multi-agent actor-critic for mixed cooperative-competitive envi-
ronments, Advances in Neural Information Processing Systems, 2017, 
vol. 2017-December, pp. 1—12.

 24. Foerster J., Nardelli N., Farquhar G., Afouras T., Torr P., 
Kohli P., Shimon Whiteson S. Stabilising experience replay for 
deep multi-agent reinforcement learning, ICML’17: Proceedings of 
the 34th International Conference on Machine Learning, 2017, vol. 70,
pp. 1146—1155.

 25. Gupta J. K., Egorov M., Kochenderfer M. Cooperative 
Multi-agent Control Using Deep Reinforcement Learning, Lec-
ture Notes in Computer Science (including subseries Lecture Notes 
in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017,
vol. 10642 LNAI, pp. 1—9.

 26. Bloembergen D., Kaisers M., Tuyls K. Lenient frequency 
adjusted Q-learning, Belgian/Netherlands Artificial Intelligence 
Conference, 2010, pp. 19—26.

 27. Omidshafiei S., Pazis J., Amato C., How J. P., Vian J. Deep 
decentralized multi-task multi-agent reinforcement learning under 
partial observability, Proceedings of the 34th International Conference 
on Machine Learning, ICML 2017, 2017, vol. 6, pp. 4108—4122.

 28. Zheng Y., Jianye Hao J., Zhang Z. Weighted double deep 
multiagent reinforcement learning in stochastic cooperative envi-
ronments, Lecture Notes in Computer Science (including subseries 

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics), 2018, vol. 11013 LNAI, pp. 1—8.

 29. Hong Z. W., Shih-Yang Su S. Y., Shann T. Y., Chang Y. H., 
Lee C. Y. A deep policy inference Q-network for multi-agent 
systems, Proceedings of the International Joint Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS, 2018, vol. 2,
pp. 1388—1396.

 30. Palmer G., Tuyls K., Bloembergen D., Savani R. Lenient 
multi-agent deep reinforcement learning, Proceedings of the In-
ternational Joint Conference on Autonomous Agents and Multiagent 
Systems, AAMAS, 2018, vol. 1, pp. 1—9.

 31. Matignon L., Laurent G. J., Le Fort-Piat N. Hysteretic 
Q-Learning: An algorithm for decentralized reinforcement lear-
ning in cooperative multi-agent teams, IEEE International Confe-
rence on Intelligent Robots and Systems, 2007, pp. 1—7.

 32. Hausknecht M., Stone P. Deep recurrent q-learning for 
partially observable MDPs, AAAI Fall Symposium — Technical 
Report, 2015, pp. 29—37.

 33. Matignon L., Laurent G. J., Le Fort-Piat N. Independent 
reinforcement learners in cooperative Markov games: A survey 
regarding coordination problems, Knowledge Engineering Review, 
2012, vol. 27, no. 1. pp. 1—32.

 34. Tan M. Multi-Agent Reinforcement Learning: Indepen-
dent vs. Cooperative Agents, Machine Learning Proceedings 1993, 
1993, pp. 1—8.

 35. Jaderberg M. et al. Human-level performance in 3D 
multiplayer games with population-based reinforcement learning, 
Science, 2019, vol. 364, no. 6443, pp. 859—865.

 36. Espeholt L. et al. IMPALA: Scalable Distributed Deep-
RL with Importance Weighted Actor-Learner Architectures, Pro-
ceedings of the 35th International Conference on Machine Learning, 
ICML 2018, 2018, vol. 4, pp. 1—10.

 37. Lillicrap T. P. et al. Continuous control with deep rein-
forcement learning, Proceedings of the 4th International Conference 
on Learning Representations, ICLR 2016 — Conference Track Pro-
ceedings, 2016, pp. 1—14.

 38. Foerster J. N., Assael Y. M., Nando de Freitas N., White-
son S. Learning to communicate with deep multi-agent reinforce-
ment learning, Advances in Neural Information Processing Systems, 
2016, pp. 1—9.

 39. Silver D., Lever G., Heess N., Degris T., Wierstra D., 
Riedmiller M. Deterministic policy gradient algorithms, Procee-
dings of the 31st International Conference on Machine Learning, 
ICML 2014, 2014, vol. 32, pp. 387—395.


