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Abstract

Multi-agent reinforcement learning methods are one of the newest and actively developing areas of machine learning. Among the
methods of multi-agent reinforcement learning, one of the most promising is the MADDPG method, the advantage of which is the
high convergence of the learning process. The disadvantage of the MADDPG method is the need to ensure the equality of the number
of agents N at the training stage and the number of agents K at the functioning stage. At the same time, target multi-agent systems
(MAS), such as groups of UAVs or mobile ground robots, are systems with a variable number of agents, which does not allow the
use of the MADDPG method in them. To solve this problem, the article proposes an improved MADDPG method for multi-agent
reinforcement learning in systems with a variable number of agents. The improved MADDPG method is based on the hypothesis that
to perform its functions, an agent needs information about the state of not all other MAS agents, but only a few nearest neighbors.
Based on this hypothesis, a method of hybrid joint / independent learning of MAS with a variable number of agents is proposed, which
involves training a small number of agents N to ensure the functioning of an arbitrary number of agents K, K> N. The experiments
have shown that the improved MADDPG method provides an efficiency of MAS functioning com-parable to the original method with
varying the number of K agents at the stage of functioning within wide limits.
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MeTton MyJIibTUAreéHTHoro oGyHeva C noaKpensfneHnem
B cucrtemax c nepeémMeHHbIM YHUCJTIOM areHToB

Memodsr myarvmuazenmno2o 00yueHus ¢ NOOKpenieHuem A6ASLOMC 00HUM U3 HOBeUWUX U AKMUBHO PA38USANOUUXCS
HanpasaeHul mauwuHHo2o obyuenus. Cpedu memodos MysbmuaceHmMHo20 00yueHUs ¢ NOOKpenaeHueM O00HUM U3 Hauboiaee
nepcnekmuerbix aeasemcs memod MADDPG, docmourncmeom Komopoz2o A643emcs 8biCOKAs CX00UMOCMb npoyecca 00yueHus.
Hedocmamxom memoda MADDPG seasemcs Heobxodumocms obecneueHus pasencmea yucaa azeumoe N Ha cmaduu o6y4eHus
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u yucaa acenmoeé K na cmaouu @yHkyuonuposanus. B mo jce epems yesegvie mysomuaeenmuvie cucmemol (MAC), makue kak
epynnot BIIJIA uau mobuavHbiX Ha3eMHbIX POOOMOB, AGASAIOMCS CUCMEMAMU C NePeMeHHbIM YUCAOM A2eHMO08, Ym0 He N0360151-
em npumenamo 6 Hux memod MADDPG. Jlns peuienus 0auHoU npobaembvl 6 cmamove npedaodHceH YCO8ePUleHCMBEOB8AHHbII Memod
MADDPG 015 mysbmuaeeHmuozo o6y4eHus ¢ noOKpenieHuem 6 CUCmemMax ¢ nepemMeHHblM YUCAOM A2eHmMOo8. YcosepuleHCmeo-
eannbviti memod MADDPG 6azupyemcs na eunomese 0 mom, 4mo 045 GblNOAHEHUS C80UX DYHKUUL aceHmY HYICHA UHGOpMAa-
yus o cocmosnuu He ecex npouux azenmosé MAC, a moavko Heckoabkux 6audcatimux cocedeti. Ha ocnoee dannoii eunome3ol
npeonoxcern memoo eubpudHoeo coemecmuoeo/nezasucumoeo o6yvenuss MAC c nepemenHbIM HYUCAIOM A2eHMO8, KOMOPbLL Nped-
nonazaem obyueHnue HeKOmMopo2o He60AbUI020 Yucaa azeHmod N 045 obecneyeHuss QYHKUUOHUPOBAHUS NPOU3BOALHO20 YUCAA
aecenmos K, K > N. IIposedennvie s3xcnepumenmol nokazaiu, 4mo ycosepuieHcmeoganuoii memod MADDPG obecneuusaem
CONOCMABUMYIO C OPUSUHANBHBIM Memodom dppexmuenocmov Gyukyuonuposanus MAC npu éapvuposeanuu yucia K acenmos
Ha cmaduu GYHKUYUOHUPOBAHUS 8 WUPOKUX Npedesax.

Karwueeuvie caosa: MYyabmuaeeHmHbsvle cucmembsl, MauuUHHoe 06y‘l€HH€, MyabmuaeeHmHoe 06y‘{€HH€ c noalcpen/leﬂueM, Cco-

emMecmuoe ooyuenue, He3asucumoe 00yuerue, nepemMeHHoe YUCA0 A2eHMO8

Introduction

With the development of reinforcement learning
methods more and more com-plex problems fall
into the area of interest of researchers. One of the
newest and actively developing areas of reinforce-
ment learning is multi-agent reinforcement learning
MDRL multi-agent systems (MAS). The interest in
the MAS is due to two rea-sons: 1) economic effi-
ciency of using, instead of one complex agent, a set
of technically simpler agents with comparable total
productivity; 2) higher efficiency of decentralized
problem-solving using MAS in comparison with
similar centralized methods [1—3].

MAS find application in such areas [4] how pro-
duction [5], transportation, smart homes, robotics
[6—9], aviation, infrastructure facilities, medicine
[10] and etc. An important problem in the develop-
ment of MAS is the ambiguity and nontriviality of
the synthesis of the policy of behavior of individual
agents according to the specified target indicators of
the MAS [11—13]. At the same time, single-agent
reinforcement learning SDRL has established itself
as a powerful and versatile tool for solving intel-
lectual problems at a level comparable to that of a
person [13—15]. Taken together, these factors de-
termine the relevance of development single-agent
deep reinforcement learning (SDRL) for use in
MAS in the form of MDRL.

The two main challenges of MDRL are learning
convergence and scalability [16]. The scalability
problem also includes the problem of the possibility
of dynamically changing the number of agents during
the operation of the MAS. The problem of the possi-
bility of dynamically changing the number of agents
is of particular importance in the context of mo-
bile MAS. Mobile MAS such as UAV groups [17]
or ground mobile robots, in comparison with other
types of MAS, are characterized by functioning in
a non-deterministic environment with a relatively

high probability of failure of individual agents, un-
stable bandwidth and topology of communication
channels [18] and etc. Also, in mobile MAS, higher
requirements for the reliability of control methods
[19, 20]. Calculation error [21, 22] can damage and
disable mobile MAS agents. These factors lead to
the fact that mobile MAS in the general case can be
considered as MAS with a variable number of agents.

To ensure the operation of the MAS with a vari-
able number of agents, the article proposes an im-
proved method of deep multi-agent learning with
reinforcement based on the gradient of the deter-
ministic policy MADDPG. The article is structured
as follows. Section 2 reviews the existing methods
and problems of MDRL, substantiates the use of the
MADDPG method as a prototype, and describes
its main features. Section 3 describes the proposed
improved MADDPG method. Section 4 presents
experimental results confirming the effectiveness of
the proposed improved MADDPG method.

Target setting

The target set in this paper is to develop a sca-
lable MDRL method based on the MADDPG. The
developed method must be able to work with a vari-
able number of agents. In this case, the computa-
tional complexity should grow no more than lin-
early in a wide range of the number of MAS agents.

Current state of the problem

The subject of this work is such a type of MOP
as learn cooperation [16]. The current section ex-
amines various approaches and methods of teaching
cooperation from the point of view of their effec-
tiveness, mechanisms for overcoming the nonstatio-
nary of the environment in the process of learning
and functioning, and the possibility of working with
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Fig. 1. An example of a spatially distributed problem [23]

a variable number of agents. This paper discusses
MOS methods for cooperative MAS without explicit
pre-organized or self-organizing communication,
designed to solve spatially distributed problems.
A generalized example of such a task is given in [23]
under the name "Cooperative navigation”, is shown
on Fig. 1.

The problem includes an MAS of K agents (green
circles) and an environment in which there is a set
of K target objects (black crosses). The goal of MAS
agents in this task is to occupy all target objects.

Let us introduce the following notation to de-
scribe the interaction between the MAS and the
environment:

s — state of the environment, which also includes
the state of agents s € .S, where S is set of possible
states of the environment;

0; — observation state of the environment avai-
lable i-th agent, o; € O; where O is the set of pos-
sible observable states of the environment of the
i-th agent;

a; — action, undertaken by the i-th agent, a; € 4;
where A; — set of possible actions of the i-th agent;

r; € R — reward, received by the i-th agent for
performing an action g; in a state of environment s,
and the transition of the environment to the state s’;

n; — the policy of the i-th agent used by the i-th
agent to transform the current observable state of
the environment o; in the probability distribution of
the action to be taken a; and parameterized by some
vector of parameters 0 :

m; 1 0;x A; > [01], ()
w;, — notation for deterministic policy m;:
Wi 20 x A = {013, @

O, — value function used by the i-th agent to
estimate the expected value of the future cumula-
tive reward when performing an action g; in the
observed state of the environment o;, and param-
eterized by some vector of parameters 0o,

0 :0,xA; > R. 3)

According to the concept of reinforcement lear-
ning used by a policy agent n; and the value func-
tion Q; are approximations of some ideal policy n:
and/or ideal value function Q;. In the process of
training, the optimization of the parameter vectors
takes place 0, and 0o, to improve the accuracy
of the approximation. Deep reinforcement learn-
ing uses artificial neural networks as approximators
(ANNSs), and as vectors of optimized parameters
0., and 0, the weights of the respective ANN:S.

Methods MDRL can be divided according to the
object of approximation into value-based methods
and policy gradient methods, under the conditions
of training on methods of joint training of agents
and methods of independent training of agents. In
value methods, the object of approximation is the
value function Q;, in gradient methods, the object
of approximation is the policy =; without/with value
function Q;. Value-base methods [24—31] presen-
ted mainly by methods based on the learning algo-
rithm DQN [14] and its modifications DRQN [32].
The main disadvantages of value-based methods
are the low learning efficiency compared to gradi-
ent methods. [33, 34] and focus on working with
discrete action space A;. An example of a gradient
method for independent learning of agents is the
method FTW [35]. The FTW method is an adap-
tation of the SDRL method based on the actor-
learner structure IMPALA [36]. In article [23] it
is shown that adapted gradient SDRL methods in
multi-agent problems have weak convergence. This
phenomenon is because the reward received by
the i-th agent r; depends not only on his actions
a; also from the actions of other agents {g; | j = i},
therefore, the probability of obtaining the correct
direction of the gradient with an increase in the
number of agents decreases exponentially. To solve
this problem at work [23] proposed a gradient meth-
od for collaborative learning of MADDPG agents
(Multiagent Deep Deterministic Policy Gradient),
DDPG-based (Deep Deterministic Policy Gradi-
ent) [37]. The DDPG method is based on the use of
two ANNSs. First ANNs — actor, used to approxi-
mate deterministic policy p; another ANNSs. critic,
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used to approximate the value function Q,. In the
MADDPG method, each agent uses its own ANNSs
pair actor and critic. At the entrance of the ANNSs
critic i-th agent approximating the value function
0,, not only action is given a; i-th agent, but also
the actions of all other agents {aj| J # i}. An impor-
tant disadvantage of the MADDPG method is the
need to ensure equality of the number of agents at
the training stage. N and the number of agents at
the stage of functioning K.

Based on the analysis of publications, the follow-
ing conclusions can be drawn. The MDRL value
methods are applicable only for problems with a
discrete set of actions. Gradient MDRL methods
with collaborative learning of agents are applicable
to problems with a continuous set of actions and
have good convergence, but they have poor scala-
bility and fault tolerance. Gradient MDRL methods
with independent learning of agents have good
scalability and fault tolerance, however, they have
problems with overcoming the nonstationary of the
environment [16].

The listed features of gradient MDRL methods
with joint and independent training of agents de-
termine the relevance of the development of hybrid
gradient MDRL methods with high convergence,
scalability, and fault tolerance. In this paper, we
propose such a hybrid method based on the MAD-
DPG method and the concept of parameter separa-
tion. Details of the implementation of the parame-
ter sharing concept in the enhanced MADDPG
method are described in the next Section.

MADDPG method

In this work, the MADDPG method is taken
as a basis for improvement in view of its following
advantages [23]:

1) versatility of work in cooperative and competi-
tive environments;

2) efficiency in comparison with other gradient
methods of joint MDRL;

3) the choice of actions can be carried out from
a continuous set of possible values.

The prototype of the multi-agent MADDPG
method is the single-agent DDPG method. [37].
The essence of the DDPG method is as follows.
Let there be a deterministic policy u(o|e“) making
decisions by an agent to take an action a in the ob-
served state of the environment o, parameterized by
a parameter vector 0,. When describing the single-
agent DDPG method, the subscript "i", indicating

the agent number, not used in values. The DDPG
method is based on the optimization of the param-
eter vector 6, with the aim of maximizing the ex-
pected total discounted remuneration J. New value
of the vector of parameters 9;” at each optimiza-
tion iteration is determined by the formula:

t+1 _ nt T

0, —9H+OLV9LJ, 6]
where 6; — the current value of the parameter
vector 0,; o — optimization step size; VQ,J

gradient J over the vector of parameterS 6y;
\% 6,J — estimated gradient value V of J.

According to the policy gradient ‘theorem [38],
provided that the medium is partially observable for
the gradient V o the following relation is true:

it

e

VGLJ B {VGLQM(O,a | 65)

o_o,,a~u(o,|6L):|

=Qw{V£4aM6@\ x )

0=0;,a~p(o; ‘GL)

t
X VGMM(S | e“)‘s=st :l )

where u[x] — mathematical expectation
of a quantlty x provided that the state of the
environment s, has distribution p, policy-driven p;
0,(0,a | G’Q) — value function Q, used by an agent
at a point in time ¢ when following a policy pu,
taking as arguments the state of the environment o
observed by the agent and the action taken by the
agent a, parameterlzed by a parameter vector eQ,
a~u(o, | 0 ,) means the agent chooses an action a
according to the dlstrlbutlon returned by u(o, | 0’ W

Ideal value function Q with full observablhty
of the environment (o = s) is given by the Bellman
equation:

0, (s;a,) = el #7055, (6)

Tt58t41

where E = Eu[x] mathematical expectation of
a quantlty x subJect to receiving the award r, and the
transition of the environment to some next state s,
according to the distribution returned by the math
entity £when using the policy p; £ — a mathematical
entity describing the functioning of an environment,
usually described as a mathematical model or an
algorithm for the dynamics of the environment;
vy € [0;1] — a discounting parameter reflecting a

510

MexaTpoHnKa, aBToMaTu3anus, ynpasienune, Tom 23, Ne 10, 2022



decrease in the importance of a subsequent reward
r,+; compared to the current award r,.

In DDPG method for policy approximation
and value functions Q, two ANNs are used, re-
spectively named actor and critic. The weights of
the ANNs actor act as a vector of parameters 6,
policy u, and the ANN weights critic act as a vector
of parameters 0, value functions Q,. During train-
ing, optimization of the vector of parameters 0, is
carried out according to the formula (4). Optimi-
zation of parameter vector values 6 is performed
by a gradient machine learning method in order to
minimize the following loss function:

LO) =B, ., . pl(©Qu0,a,100)~ )1, (7)

s~p*ay

Vi = r(staat) + ’YQH(Ot+lsat+l | etQ)J (8)

where y, — expected total discounted remuneration.
The MADDPG method is a multi-agent exten-
sion of the DDPG method. For each i-th agent
from N agents MAS uses two ANNs (Fig. 2, see
the second side of the cover) for policy approxima-
tion w; and value functions Q; — actor and critic,
respectively. At the stages of learning and function-
ing i-th agent uses decision policy p; for transform
the current observable state of the environment o;
in the action taken ag;. Value functions Q, the i-th
agent is used only at the training stage to assess the
usefulness of the action taken by the i-th agent a;.
In contrast to the single-agent variant of the
value function Q(o, a) the DDPG method, which
takes as an argument the action a of one agent, a
multi-agent value function Q,(o;, a;) method MAD-
DPG takes as an argument the actions of all agents:

a={a;|i=1N}. )

The following is a more rigorous mathematical
description of the method, MADDPG. Consider a
problem with N agents whose policies p;, i =1, N
parameterized by parameter vectors 0, . Optimiz-
ing parameter vectors 9 using the gradlent rise
method, it is carried out accordmg to the formula:

o, =0 + oV vV . J., (10)

where J; — expected total discounted remuneration
of the i-th agent.

Gradient Vo J calculated by the formula:

—_

Vefli Ji= Es~p“i {VaiQu;(O’a | GIQ,,)

t
0=0;,a;~1;(0;16},;)

(11)
X Vepl_u,-(s | eﬁi )L:sr } )

where etQ,- — vector of parameters of the value
function Q“l_ now f.
Qu,— updated to minimize the loss function £(0 0 )

L(6g,) =
& Lo (12)
LI (( M OR AL LSS AR P
Vi = r(st’at) + YQH,-(OHIJaHl | eth) (13)

In the article [23] the effectiveness of the MAD-
DPG method was investigated when working with
a fixed number of agents, the same for the training
stage and for the execution stage. As the authors
note, one of the further directions in the develop-
ment of the method is its development for working
with a variable number of agents.

Advanced MADDPG Method

The advanced MADDPG method differs from
the original method in the following modifications.

1. At the training stage, N agents are used, at
the functioning stage, an arbitrary number of K > N
agents.

2. At the stage of functioning, a "scope" is intro-
duced for agents. The state of the environment o;
observed by the i-th agent includes the state of only
those agents that fall into this scope. Let’s desig-
nate the field of visibility, determined by objective
reasons, such as the range of the communication
channel or the range of visual observation, as the
natural field of visibility. If more than N — 1 agents,
the method uses an artificial scope, which includes
N — 1 nearest agents (Fig. 3, a, see the second side
of the cover). If the natural scope falls M < N — 1
other agents as states (N — 1) — M of unobserved
agents, their last observed state is used (Fig. 3, b,
see the second side of the cover).

3. According to the concept of parameter sha-
ring, the same decision-making policies are used for
all agents. y; = ... = uy = p and the value function
0, =...0y=20 (Flg 4, see the second side of the
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cover). At the training stage, one ANN actor and
one ANN critic are used for all agents. At the stage
of functioning, all agents use identical copies of the
actor ANN.

Expressions (10)—(13), taking into account the
listed features, take the following form. Common
policy for all agents u parameterized by the parame-
ter vector 0,. Parameter vector optimization 6, uing
the gradient rise method, it is carried out according
to the formula:

. S
0.7 =6, + aVeLJi, (14)
where J; — expected total discounted remuneration
of the i-th agent.
Gradient V o J;, calculated by the formula:
u

—

ToTnsB, {va,.Qp(o,a |05)

t
ozot’aiNHi(Otlepi)

(15)
Xveuiui(s | GLf )‘s:s }’

where G’Q — vector of parameters of the value
function Q, at the moment 7.
0, updated to minimize the loss function £(6):

L(6y) =

[(Q,(0,a|0p)-y)%l, (16)

s~pta~pr~E

Ve =1(s1,0,) + 70, (01415444 | etQ) 7)

The modifications of the MADDPG method
proposed in the work lead to the following results:

1. Computational complexity of each training
step with an equal number of agents being trained
N remains the same. The number of ANN actor
and critic decreases by N times, while the num-
ber of acts of optimization of the weights of these
ANNSs increases by the same number of times at
each learning step.

2. The introduction of the scope allows us to re-
duce the task of ensuring the functioning K agents
to the task of ensuring the functioning N agents. As
follows from the results of experimental studies in
the next section, it is enough to conduct training
N < K agents, in contrast to the original method,
where N = K.

3. Because N < K, in the improved MADDPG
method, it will be possible to significantly reduce
the computational complexity of MAS training
to ensure the functioning K agents. Consider the
factors affecting the computational complexity of
one step of training when switching from training

N, agents for training N, agents in the MADDPG
method with N, > Ni:

I) the number of ANN inputs actor and critic,
which are responsible for information about other
agents, increases by N,/N; times, which leads to
a quadratic increase in the number of connections
in the ANN actor and critic and a corresponding
increase in the number of necessary computational
operations;

2) the input data space increases proportionally
N,/N,, which may require an increase in the num-
ber of perceptrons in individual layers of the ANN
and lead to an additional abrupt increase in the
number of computational operations;

3) the number of ANNSs actor and critic increases
by N,/N, times, which leads to a linear increase in
the required memory for storing the ANN weights
actor and critic.

Taken together, these factors lead to a non-linear
increase in the computational complexity of each
training step.

4. In the analogous method, in the learning
process, agents "get used” to each other’s behavior,
since the input data is an ordered tuple, where in-
formation about the state of the i-th agent is in
the corresponding i-th position of the input data.
By using identical copies of the ANN actor, the
impersonality of agents is achieved — one of the
prerequisites for scalability.

Results

The results of an experimental comparison of the
original and improved MADDPG method are shown
in Fig. 5—7 (see the second side of the cover). Fig. 5
shows graphs of the frequency of training steps exe-
cution on the same hardware for the original and
improved MADDPG method with the number of
agents being trained. N = {3;5}. The jump in the
frequency of training steps at the initial stage is
explained by the accumulation of data in the retry
buffer and the absence of an optimization operation
for the ANN weights. The graphs show approxi-
mately equal frequency of learning steps for the
original and improved method.

Fig. 6 (see the second side of the cover) shows
graphs of learning curves — the dependence of the
total reward received by the MAS during an episode
on the number of learning steps for the number of
agents being trained N = {3;5}. As it follows from
Fig. 6, the learning rate for the improved and origi-
nal method is approximately equal.
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Fig. 7 (see the second side of the cover) shows
the average values of the total reward received by
the trained MAS per episode for the original and
improved MADDPG methods for various values of
the number of K agents at the stage of functioning.
For the original method, the results were obtained
for N = K. For the improved method, the results are
given for various N.

As follows from the results, the efficiency of the
functioning of the MAS trained using the improved
method is comparable to the efficiency of the MAS
trained using the original MADDPG method. In this
case, using the improved method, it suffices to train
the number of agents NV less than the number of agents
K at the stage of functioning for different values of K.
For example, an MAS trained using the improved
method for N = 3 for K= {5;7} demonstrates the same
efficiency as the original method, which requires strict
compliance N= K=50or N=K=1.

Conclusion

In this paper, we propose an improved multi-
agent reinforcement learning method based on the
MADDPG deterministic policy gradient. The im-
proved MADDPG method is based on the use of
the concept of shared parameters and the introduc-
tion of artificial scoping for agents. The obtained
results of experimental studies have confirmed the
following theoretical expectations:

1) with an equal number of trained agents N,
the computational complexity of the improved and
original MADDPG methods are the same;

2) the efficiency of training using the improved
method of N agents for an MAS of K agents for
K > N comparable to the learning efficiency with
the original method of K agents.

The results obtained confirm the possibility of the
improved MADDPG method working with a vari-
able number of agents. In the future, the solutions
proposed in this work can also be used to reduce the
computational complexity of the original MADDPG
method by reducing the number of trained agents N
for a given number of K MAS agents.
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