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A Method for Catastrophic Forgetting Prevention
during Multitasking Reinforcement Learning*

Принцип обучения с подкреплением основан на взаимодействии агента с окружением в целях максимизации своей 
награды. Обучение с подкреплением показывает очень хорошие результаты в решении различных задач управления. Тем 
не менее, попытки обучить интеллектуального агента эффективно решать несколько задач страдают от проблемы 
так называемого "катастрофического забывания". Полученные агентом знания об одной задаче вытесняются инфор-
мацией в ходе выработки правильной стратегии для другой. Одним из методов предотвращения катастрофического 

Abstract

Reinforcement learning is based on a principle of an agent interacting with an environment in order to maximize the amount of 
reward. Reinforcement learning shows amazing results in solving various control problems. However, the attempts to train a multitasking 
agent suffer from the problem of so-called "catastrophic forgetting": the knowledge gained by the agent about one task is erased during 
developing the correct strategy to solve another task. One of the methods to fight catastrophic forgetting during multitask learning assumes 
storing previously encountered states in, the so-called, experience replay buffer. We developed the method allowing a student agent to 
exchange an experience with teacher agents using an experience replay buffer. The procedure of experience exchange allowed the student 
to behave effectively in several environments simultaneously. The experience exchange was based on knowledge distillation that allowed 
to reduce the off-policy reinforcement learning problem to the supervised learning task. We tested several combinations of loss functions 
and output transforming functions. Distillation of knowledge requires a massive experience replay buffer. Several solutions to the problems 
of optimizing the size of the experience replay buffer are suggested. The first approach is based on the use of a subset of the whole buffer; 
the second approach uses the autoencoder as a tool to convert states to the latent space. Although our methods can be applied to a wide 
range of problems, we use Atari games as a testing environment to demonstrate the methods.
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buffer, policy distillation, behavior cloning, imitation learning, catastrophic forgetting, continuous learning
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Introduction

General-purpose robotic systems should possess a 
wide variety of skills. The ability to acquire different 
skills is an essential feature of intelligent agents (IAs) 
to ensure their intelligent behavior. The principle of 
reinforcement learning ensures a general approach 
for robotic systems to acquire new skills. During re-
inforcement learning, intelligent agents interact with 
their surroundings and try to maximize their reward 
[1]. Current reinforcement learning methods are rather 
inefficient and assume the learning to occur by trial-
and-error method during millions of attempts. Such 
inefficiency is not critical in a case of an agent learning 
a single task in a virtual environment. However, train-
ing becomes very time-consuming for a robotic plat-
form multitask training in a real-world environment 
[2]. A large amount of time required to learn a single 
skill makes the multitask robotic platform very difficult 
to implement [3]. Hence, interest exists in the devel-
opment of methods to speed up the learning process 
of IAs. One of the possible methods for accelerated 
training of an agent is the borrowing of experience 
from other agents [4]. To store and exchange experi-
ences more efficiently, one needs to create a compact 
representation of knowledge. Thus, further research is 
nee ded in multitask reinforcement learning and know-
ledge exchange between AIs [5] and robotic systems [6].

The peculiarities
of multitasking reinforcement learning

Many multitask reinforcement learning approach-
es assume simultaneous availability and accessibility 
of the data for all the tasks at an arbitrary instant of 
time. Such an approach can be unrealistic for ro-
bots learning a single problem at any instant of time. 
Multitask learning can be organized by training sev-
eral agents each on a separate task with a consequent 
merging of the acquired experiences inside one agent 
(experience exchange). Currently, several groups sug-

gested several methods for the implementation of ex-
perience exchange between IAs during reinforcement 
learning. One of these methods is imitation lear-
ning (also known as ‘learning from demonstration’) 
[7]. During imitation learning, the student agent is 
learning by repeating the actions of an expert agent. 
Another method of experience exchange between 
IAs is policy distillation (or behavior cloning). The 
term ‘distillation’ usually assumes that the exchange 
of policies occurs as a result of supervised learning 
of the student agent on a dataset (set of states and 
corresponding actions) provided by the expert agent 
[8—10]. One another method of experience exchange 
between IAs is offline reinforcement learning [11]. 
This method is based on the postulate that online 
interaction with an environment is impractical in a 
majority of cases: data collection can be a very slow 
and laborious procedure (for example, in robotics) 
or it can be very dangerous (for example, during au-
tonomous driving or in medicine). Offline learning 
reuses previously collected data stored in, the so-
called, experience replay buffer without acquiring 
additional data from the environment [11]. However, 
during offline learning, an agent can get into the 
state not stored in the buffer. Thus, to improve the 
training process, the agent still needs periodic inter-
action with an environment to get additional data.

In the case of partially observed states, the 
process of decision-making during reinforcement 
learning is not Markovian anymore; in this case, 
one needs to consider previous states encountered 
by the agent. Storing the sequential states in a buf-
fer could require additional computer memory. The 
excessive use of computer memory is even more 
probable during multitask learning. The size of the 
stored experience replay buffer can be decreased if 
one uses compressed representations of states. One 
can use autoencoders to translate the states into 
compressed latent representations [12, 13].

An additional problem of multitask learning is 
the retaining of the skills acquired by an agent at 

забывания при многозадачном обучении является обучение агента на сохраненных в буфере опыта ранее встреченных 
состояниях. Разработанный нами метод позволяет обучить агента тому, как эффективно вести себя в нескольких 
средах одновременно на основе обмена опытом с агентами-учителями, используя буфер опыта. Обмен опытом основан 
на распространенном в глубоком обучении подходе, называемом дистилляцией знаний. Дистилляция знаний позволила 
свести задачу с подкреплением к задаче обучения с учителем. В ходе исследований были протестированы и выбраны 
максимально успешные сочетания различных функций потерь и способов преобразования выходных слоев нейросетей. 
Метод дистилляции знаний требует хранения огромного буфера состояний. Предложены несколько методик оптими-
зации хранения буфера: использование части буфера и сжатие состояний во внутреннее представление нейросети с по-
мощью автокодировщика. В качестве тестового окружения для экспериментов использовались игры Atari.

Ключевые слова: обучение с подкреплением, автономное обучение с подкреплением, мультизадачное обучение, 
обмен опытом, буфер опыта, дистилляция стратегии, клонирование поведения, имитационное обучение, катастро-
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earlier stages. This can be a nontrivial task for IA 
because of the problem of catastrophic forgetting 
well known in machine learning [14]. There are 
several approaches to fight catastrophic forgetting 
[15]. The simplest one assumes joint training on all 
the data previously encountered by an agent. The 
experience replay bufferes suit well for this purpose.

In this paper, we investigate the mechanisms of 
experience exchange between intelligent agents in re-
inforcement learning tasks. The agents are located in 
partially observable states. To implement the experi-
ence exchange, we use the distillation method redu cing 
the reinforcement learning to a supervised lear ning 
problem. We tested several methods for downsizing the 
stored experience replay buffer. We demonstrate the 
possibility of the prevention of catastrophic forgetting 
when an agent uses its own previously stored buffer.

Experience exchange between intelligent agents
on the base of compressed representations

of the states of an environment

In this paper, we present an approach that allows to 
merge the experiences acquired by several agents into a 
single multitask agent. The problem statement is in the 
following. Two intelligent agents are trained each on 
its own task. These two pretrained agents serve as tea-
chers. The student agent is a copy of one of the teacher 
agents. We search for a way to teach the student agent 
the skills of the second teacher. During learning the 
skills of the second teacher, it should be ensured that 
the student does not forget previous skills.

At the first stage, we train the teacher agents with 
a deep Q-learning (DQN) algorithm [16]. In this ap-
proach, IA learns the value Q(s, a) of certain action a
in a specific state s. In each step, an agent chooses 
an action with the largest value. In this approach, af-
ter every interaction with an environment, the agent 
stores into an experience replay buffer the current state 
s, the action taken a, the reward for this particular ac-
tion r, the next state s’, and the variable indicating the 
terminal state. The buffer allows for efficient use of 
previous experience through its continuous rehearsing. 
The variant of Q-learning used in the current paper is 
called Dueling-DQN [17]. In this approach, the neu-
ral network consists of two evaluating networks. One 
network predicts the weighted average of Q-function 
over all the actions V(s). Another network predicts the 
advantage of every action:

 ( , ) ( , ) ( ).A s a Q s a V s= −

These two estimates are combined inside a sepa-
rate layer to get the current value of the Q-function.

At the second stage, we transfer the knowledge to 
the student agent using distillation [18]. Within this 
approach, the student receives a batch of states out 
of the experience replay buffer of the teacher and 
outputs state-action Q-values (Qstudent). We compare 
student’s Q-values to the ones of teacher agents 
(Qteacher1, Qteacher2) for the same states and cor-
rect the weights of student’s neural network. Using 
this method, we reduce the reinforcement learning 
problem down to supervised learning. To prevent 
catastrophic forgetting, one needs to satisfy an ad-
ditional condition: the Q-values of student agent 
with new knowledge should not differ from the stu-
dent’s previous Q-values. Accordingly, we use the 
following loss function:

 Loss =
 = loss1(Qteacher1, Qstudent) + loss2(Qteacher2, Qstudent),

where loss1 and loss2 show the divergence between 
Q-functions of the student and the teacher (Fig. 1). 
Our approach reminds behavior cloning [8], 
however, it is applied not to the behavioral policy, 
but to the Q-function.

Experience replay buffers can occupy an enor-
mous amount of computer memory. We tested seve-
ral approaches to decrease the buffer size. One of the 
approaches is based on selective storage of the en-
countered states. The first option is to use only a cer-
tain amount of the latest states. The second option 
is to use the subsampling of the states encountered 
by an agent. We use the following algorithm for the 
subsampling. On arrival into some state, we generate 
a random key from the uniform distribution U[0, 1]. 
The current state is added into the experience replay 
buffer if the key is larger than B/t, where B is the 
current buffer size, t is the state’s order number. The 
disadvantage of this option is that stored states are 

Fig. 1. The scheme of experience exchange between IAs. Bi is the 
experience replay buffer of i-th environment, S is the batch of 
states, Ti is the teacher agent for the i-th environment, St is the 
student agent, Q are the state-action values for the student and 
teachers, li is the loss function for the i-th environment
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not consecutive, which is a problem in the case of 
partially observable states. The solution could be the 
simultaneous storage of several consecutive states at 
once. However, storing the series of states can lead to 
the excessive use of computer memory. One another 
approach to decrease the size of the buffer is to com-
press the representation of stored states. To perform 
the compression, we use an autoencoder [13]. Auto-
encoders are standard instruments of machine lear-
ning for dimensionality reduction of data. The buffer 
compressed by an encoder can be further restored by 
the decoder and used for experience exchange be-
tween the agents.

Computational test

As an example of the application of the developed 
multitask learning method, we used IAs trained to 
play Atari games in OpenAI environment [19]. We 
should note that the developed algorithm is general 
and can be used in other environments and robotic 
systems.

For experience exchange experiments, we trained 
five agents on different Atari games. Image frames 
received from the environments were stacked into 
four frames per state following the original paper of 
DeepMind [16]. This stacking is related to the fact 
that each frame represents the partially observable 
state (for example, the frame does not contain in-
formation about the speed of objects). Among five 
environments, we chose the agents having the same 
number of actions: two agents (Atlantis and Break-
out) had 4 action options; three agents (Demon At-
tack, Pong, and Up and Down) had 6 options for 
action. As DQN learning is very time-consuming, 
we trained the agents only to the level comparable 
to human abilities to play these games. Maximum 
points scored by the agents in different games are 
shown in Table 1.

In the process of agents training, we stored the 
replay buffer (105 states for Atlantis and Breakout 
games, 2•105 states for Pong, Demon Attack, and 

Up and Down games). These buffers served as the 
base for later experience exchange. Different envi-
ronments require different times to achieve an opti-
mal score; this fact determines the different sizes of 
stored buffer (Table 2).

During training, we used the batch consisting 
of 16 states for every environment. To optimize the 
gradient descent, we used the Adam optimizer [7] 
with a learning rate 6,25•10–4. The number of itera-
tions of the algorithm was 106.

The evaluation of the quality of the models was 
performed as follows. In every environment, the 
trained agent was tested ten times during 12 500 
consecutive states. After that, we calculated the 
mean and standard deviation for the points scored 
during every test.

As an alternative to our method of experience 
exchange, we tested offline learning. In this ap-
proach, the student agent learns the effective beha-
vior in two environments by training with the DQN 
algorithm on a combined buffer of teacher agents. 
This approach resulted in a fast loss of performance 
in the previously learned environment and in the 
absence of the learning progress in the new envi-
ronment (Table 3).

At the next stage, we tested the methods of expe-
rience exchange between IAs on the base of distil-
lation with additional buffer compression methods.

As the first option, we used an approach based on 
storing only the part of the total buffer obtained dur-

Table 1

Scored points for the environments used in the paper

Environment Random behavior Human DQN agent

Atlantis ∼13 000 ∼29 000 ∼3 000 000

Breakout ∼2 ∼30 ∼350

Demon Attack ∼150 ∼3400 ∼30 000

Pong ∼–21 ∼9 ∼20

Up And Down ∼533 ∼9 000 ∼16 000

Table 2

Dimensions of the replay buffers

Environment Atlantis Breakout
Demon 
Attack

Pong
Up And 
Down

Amount of the states 
in the buffer, 106

4 4 21,4 0,8 14,6

The dimension of 
the total buffer, Gb

26,29 26,29 140,63 5,26 95,94

The dimension of 
the compressed
buffer, Gb

0,95 0,95 5,1 0,2 3,48

Table 3

Comparison of the loss functions for Pong
and Up-and-Down games. The mean and standard deviation

of the scored points are provided

Envi-
ronment

Offline 
learning

Mean
square loss

Kullback-
Leibler loss

Binary cross-
entropy loss

Pong –19,9 ± 5,05 15,50 ± 1,59 15,67 ± 0,93 15,54 ± 0,86

Up and 
Down

3878 ± 186 5111 ± 1256 4347 ± 943 6336 ± 886
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ing initial training. A large number of stored states 
requires enormous computer memory to accommo-
date the whole buffer (Table 2). For example, the size 
of the buffer for the Demon Attack game amounted 
to 140 Gb. To decrease the size of the buffer, we used 
8•105 latest states for every game. The output values 
of Q-functions were modified with the argmax func-
tion (to single out the only action) or with the soft-
max function (to take into account the probability of 
every action); the modified values were supplied into 
the loss function. The best results were achieved with 
the softmax function combined with binary cross-
entropy as a loss function. This combination allowed 
the student agent to achieve scores comparable with 
that of teacher agents (Table 3).

The use of the argmax function demonstrated 
learning instability. During the initial epochs of 
training, the agent adopted the ability to adequately 
behave in two environments. However, during fur-
ther training, there occurred a surge in the loss func-
tion with the agent’s sudden loss of the ability to have 
productive interaction with the environments.

Besides binary cross-entropy, we used mean-
square and Kullback-Leibler losses. As one can see 
from Table 3, all these loss functions adequately 
solve the problem.

The next option to decrease the buffer size is se-
lective storage of encountered states as was described 
in the previous section. Each entry in the buffer con-

sisted of four consecutive states determined by their 
partial observability. We collected two buffers 20 000 
states each for games Pong and Up-and-Down. 
When training on this subsampled buffer, the student 
agent did not show high scores compared to training 
on the final part of the total buffer. The following 
scores were achieved: 13,66 ± 0,86 for the Pong game 
and 2804 ± 255 for Up-and-Down.

The next method of decreasing the size of the 
buffer was based on the transformation of the 
frames of the games into a latent space of auto-
encoder. For every environment, the autoencoder 
with latent space 64 was trained on the total buf-
fer (Fig. 2). Autoencoder was trained on batches 
of 25 states. We used the Adam optimizer with a 
learning rate 0,0005. All the states were compressed 
with a coder and stored on a computer drive that 
allowed to reduce the representation of the state 
of the environment from 84 (int) Ѕ 84 (int) Ѕ 4 =
= 28 224 bytes down to 64 (float32) Ѕ 4 = 1024 bytes. 
The autoencoder allowed to reduce the buffer size 
by 27 times (Table 2); that way the buffer fully fitted 
into computer memory. The process of experience 
exchange had just a small modification: during the 
training of the student agent, the stored states should 
be decompressed with a decoder. After the training of 
student agent on a compressed buffer, the efficiency 
of its behavior became comparable to that of teacher 
agents (Table 4). Table 4 shows the results for the 
softmax function at the output of the network com-
bined with the binary cross-entropy loss function. 
The only problem with the proposed method of buf-
fer compression is the limitations of the autoencoder: 
the peculiarities of the autoencoder’s compression 
could make it difficult to encode some essential parts 

Fig. 2. The architecture of the autoencoder used for the compression 
of the states of the game environments

Table 4

The outcome of experience exchange

Teacher 1 
Teacher 2

Teacher’s score

Student’s score 
(training
on a part

of the buffer)

Student’s score 
(training

on latent re-
presentations)

Atlantis 271856 ± 132507 233824 ± 178721 180000 ± 17200

Breakout 212,3 ± 45,3 199,9 ± 52,8 8,4 ± 2

Demon 
Attack

9251 ± 3301 6169 ± 2599 9284 ± 2987

Up and 
Down

6608 ± 918 4526 ± 329 4892 ± 470

Pong 15,9 ± 1,43 15,54 ± 0,86 15,43 ± 0,78

Up and 
Down

6607 ± 918 6336 ± 886 6397 ± 686
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of an image. For example, for the Breakout game, the 
autoencoder could not encode the image of the ball. 
As a result, experience exchange did not work for this 
particular case.

Conclusion

We proposed and tested the variant of behavior 
cloning where Q-function is used instead of policy. 
The behavior cloning in our case had the additional 
feature: with our method, the student agent learned 
the behavior of a teacher agent without losing the 
ability to perform previously learned tasks. This 
was achieved by utilizing both the teacher’s and 
its own experience replay buffers. The outcomes 
of experience exchange are shown in Table 4. One 
can see that the performance of student agents is 
comparable to that of teachers. One can conclude 
that our method successfully handles catastrophic 
forgetting and can be used in multitask reinforce-
ment learning.

The methods of decreasing the dimensions of ex-
perience replay buffer (using the latest encountered 
states or using the latent representations) allowed to 
significantly reduce the usage of computer memory 
without the significant deterioration of the accuracy 
of experience exchange. The use of latent features 
allowed to decrease the amount of memory for stor-
ing the buffer. However, it increased the time of 
agent’s training as the states should have been first 
decompressed to be used in knowledge distillation. 
This method had additional limitations due to the 
peculiarities of the encoding-decoding procedure. 
To be used in full, the autoencoder’s compression 
quality needs further improvements.
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