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A Method for Catastrophic Forgetting Prevention
during Multitasking Reinforcement Learning*

Abstract

Reinforcement learning is based on a principle of an agent interacting with an environment in order to maximize the amount of
reward. Reinforcement learning shows amazing results in solving various control problems. However, the attempts to train a multitasking
agent suffer from the problem of so-called "catastrophic forgetting": the knowledge gained by the agent about one task is erased during
developing the correct strategy to solve another task. One of the methods to fight catastrophic forgetting during multitask learning assumes
storing previously encountered states in, the so-called, experience replay buffer. We developed the method allowing a student agent to
exchange an experience with teacher agents using an experience replay buffer. The procedure of experience exchange allowed the student
to behave effectively in several environments simultaneously. The experience exchange was based on knowledge distillation that allowed
to reduce the off-policy reinforcement learning problem to the supervised learning task. We tested several combinations of loss functions
and output transforming functions. Distillation of knowledge requires a massive experience replay buffer. Several solutions to the problems
of optimizing the size of the experience replay buffer are suggested. The first approach is based on the use of a subset of the whole buffer;
the second approach uses the autoencoder as a tool to convert states to the latent space. Although our methods can be applied to a wide
range of problems, we use Atari games as a testing environment to demonstrate the methods.
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MeToa npeogoneHusa Katactpoduyeckoro 3adbbiBaHUA
npu MynsTU3agadyHoM oby4YeHUM ¢ nogKpenneHnem

IIpunyun obyuenus c nookpenieHuem OCHO8AH HA 63AUMOO0CUCMBUU A2eHMA C OKPYICEHUEM 6 UeAdX MAKCUMUZAYUU c8oell
Haepadvl. OOyueHue ¢ NoOKpenieHuem NOKa3vleaem O4eHb Xopouiue pe3yiomamol 6 peuwleHul pasiuinslx 3aday ynpaeienus. Tem
He MeHee, NONbIMKU 00y4UmMb UHMEANeKMYAAbH020 A2eHma 3Q@eKmUsHo peuams HeCKoAbKo 3adau cmpadarm om npooaembl
max Hasvieaemozo "Kamacmpogpuueckozo 3abvieanus’”. Iloasyuennvie acenmom 3sHanus 00 00HOU 3adaue 8blMeCHAOMCA UHPDOP-
Mauuetl 8 xode eblpabomKu npasuibHou cmpameauu 045 opyeou. OOHUM U3 mMemodos npedomepaujeHus Kamacmpopuueckozo

*UccenoBaHue BBITTOJHEHO pU (pMHAHCOBOI noanepxke PODU u [TpaBurenbcTBa YibsIHOBCKOIM 061acTul (mpoekT No 18-47-732006).
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¢uueckoe 3a6vi6anue, HenpepvieHoe 00yueHUe

3a0bl6aHUS NPU MHO203A0AUHOM 00yUeHUlU 6A5emcs 00yueHUe aeeHma Ha COXPAHEHHbIX 6 Oyghepe onvima panee 6CMpeHeHHbIX
cocmosHuax. Paspabomannusiii namu memod nosgoasem o0yuums azenma momy, KaK 3¢p@ekmueno éecmu cebs 6 HeCKOAbKUX
cpedax 00HOBPEMEHHO HA OCHO8e 00MEHA ONbIMOM C A2eHMAMU-YYUMeNIMU, UCnoAb3Ys Oydep onvima. O6MeH 0nbIMoOM OCHOBAH
Ha pacnpocmpaneHHoM 8 enyb0KoM o0yyeHuu nooxooe, HA3bl8AeMOM OUCmMUALAYUel 3HAHUL. JJUCMUAIAYUS 3HAHUL NO360AULA
ceecmu 3adauy ¢ nodkpenienuem K 3adauve o6yuenus c yuumenem. B xode uccaedogsarnuii Oviau npomecmuposansl U 6bl0Pambl
MAKCUMAALHO YCHeUHble CO4eMAanUs pa3iutHblX QYHKYUi nomeps U cnocobos npeodpa3o8anus 6biX00HbIX CA0e8 Helipocemell.
Memo0d ducmunnayuu 3uanuii mpebyem XpaneHus 02pomHo2o 6ygepa cocmosanuil. Ilpedroxcenvl HeCK0AbKO MemOOUK ONMuMu-
3ayuu xpanenus 6ygepa: ucnoav3osarue yacmu oygepa u cycamue cOCMoAHUL 60 BHymMpeHHee npedcmasieHue Hellpocemu ¢ no-
MOWbI asmokoouposuiuka. B kauecmee mecmoeoeo okpyscenus 0458 IKCREPUMEHMOE UCHOAb308ANUCH Uepbl Atari.

Karoueesvie caosa: obyuenue ¢ nookpenienuem, aemoHOMHOe 00yUeHUe ¢ NOOKpenieHuem, MyibmusadauHoe o0yueHue,
obmen onvimom, 6yghep onvima, OUCMUAAAYUA CIMPAMe2UU, KAOHUPOBAHUE NOGEOCHUS, UMUMAUUOHHOe 00yYeHUe, Kamacmpo-

Introduction

General-purpose robotic systems should possess a
wide variety of skills. The ability to acquire different
skills is an essential feature of intelligent agents (IAs)
to ensure their intelligent behavior. The principle of
reinforcement learning ensures a general approach
for robotic systems to acquire new skills. During re-
inforcement learning, intelligent agents interact with
their surroundings and try to maximize their reward
[1]. Current reinforcement learning methods are rather
inefficient and assume the learning to occur by trial-
and-error method during millions of attempts. Such
inefficiency is not critical in a case of an agent learning
a single task in a virtual environment. However, train-
ing becomes very time-consuming for a robotic plat-
form multitask training in a real-world environment
[2]. A large amount of time required to learn a single
skill makes the multitask robotic platform very difficult
to implement [3]. Hence, interest exists in the devel-
opment of methods to speed up the learning process
of IAs. One of the possible methods for accelerated
training of an agent is the borrowing of experience
from other agents [4]. To store and exchange experi-
ences more efficiently, one needs to create a compact
representation of knowledge. Thus, further research is
needed in multitask reinforcement learning and know-
ledge exchange between Als [5] and robotic systems [6].

The peculiarities
of multitasking reinforcement learning

Many multitask reinforcement learning approach-
es assume simultaneous availability and accessibility
of the data for all the tasks at an arbitrary instant of
time. Such an approach can be unrealistic for ro-
bots learning a single problem at any instant of time.
Multitask learning can be organized by training sev-
eral agents each on a separate task with a consequent
merging of the acquired experiences inside one agent
(experience exchange). Currently, several groups sug-

gested several methods for the implementation of ex-
perience exchange between IAs during reinforcement
learning. One of these methods is imitation lear-
ning (also known as ‘learning from demonstration’)
[7]. During imitation learning, the student agent is
learning by repeating the actions of an expert agent.
Another method of experience exchange between
IAs is policy distillation (or behavior cloning). The
term ‘distillation’ usually assumes that the exchange
of policies occurs as a result of supervised learning
of the student agent on a dataset (set of states and
corresponding actions) provided by the expert agent
[8—10]. One another method of experience exchange
between IAs is offline reinforcement learning [11].
This method is based on the postulate that online
interaction with an environment is impractical in a
majority of cases: data collection can be a very slow
and laborious procedure (for example, in robotics)
or it can be very dangerous (for example, during au-
tonomous driving or in medicine). Offline learning
reuses previously collected data stored in, the so-
called, experience replay buffer without acquiring
additional data from the environment [11]. However,
during offline learning, an agent can get into the
state not stored in the buffer. Thus, to improve the
training process, the agent still needs periodic inter-
action with an environment to get additional data.

In the case of partially observed states, the
process of decision-making during reinforcement
learning is not Markovian anymore; in this case,
one needs to consider previous states encountered
by the agent. Storing the sequential states in a buf-
fer could require additional computer memory. The
excessive use of computer memory is even more
probable during multitask learning. The size of the
stored experience replay buffer can be decreased if
one uses compressed representations of states. One
can use autoencoders to translate the states into
compressed latent representations [12, 13].

An additional problem of multitask learning is
the retaining of the skills acquired by an agent at
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earlier stages. This can be a nontrivial task for 1A
because of the problem of catastrophic forgetting
well known in machine learning [14]. There are
several approaches to fight catastrophic forgetting
[15]. The simplest one assumes joint training on all
the data previously encountered by an agent. The
experience replay bufferes suit well for this purpose.
In this paper, we investigate the mechanisms of
experience exchange between intelligent agents in re-
inforcement learning tasks. The agents are located in
partially observable states. To implement the experi-
ence exchange, we use the distillation method reducing
the reinforcement learning to a supervised learning
problem. We tested several methods for downsizing the
stored experience replay buffer. We demonstrate the
possibility of the prevention of catastrophic forgetting
when an agent uses its own previously stored buffer.

Experience exchange between intelligent agents
on the base of compressed representations
of the states of an environment

In this paper, we present an approach that allows to
merge the experiences acquired by several agents into a
single multitask agent. The problem statement is in the
following. Two intelligent agents are trained each on
its own task. These two pretrained agents serve as tea-
chers. The student agent is a copy of one of the teacher
agents. We search for a way to teach the student agent
the skills of the second teacher. During learning the
skills of the second teacher, it should be ensured that
the student does not forget previous skills.

At the first stage, we train the teacher agents with
a deep Q-learning (DQN) algorithm [16]. In this ap-
proach, IA learns the value Q(s, a) of certain action a
in a specific state s. In each step, an agent chooses
an action with the largest value. In this approach, af-
ter every interaction with an environment, the agent
stores into an experience replay buffer the current state
s, the action taken a, the reward for this particular ac-
tion r, the next state s’, and the variable indicating the
terminal state. The buffer allows for efficient use of
previous experience through its continuous rehearsing.
The variant of Q-learning used in the current paper is
called Dueling-DQN [17]. In this approach, the neu-
ral network consists of two evaluating networks. One
network predicts the weighted average of Q-function
over all the actions V(s). Another network predicts the
advantage of every action:

A(s,a) = Q(s,a) -V (s).

These two estimates are combined inside a sepa-
rate layer to get the current value of the Q-function.

At the second stage, we transfer the knowledge to
the student agent using distillation [18]. Within this
approach, the student receives a batch of states out
of the experience replay buffer of the teacher and
outputs state-action Q-values (Qy,z.n)- We compare
student’s Q-values to the ones of teacher agents
(Oreacherts Qreacherr) for the same states and cor-
rect the weights of student’s neural network. Using
this method, we reduce the reinforcement learning
problem down to supervised learning. To prevent
catastrophic forgetting, one needs to satisfy an ad-
ditional condition: the Q-values of student agent
with new knowledge should not differ from the stu-
dent’s previous Q-values. Accordingly, we use the
following loss function:

Loss =
= loss I(Qteacherh Qstudent) + loss2(Qreacher29 Qstudenr)ﬂ

where loss; and loss, show the divergence between
Q-functions of the student and the teacher (Fig. 1).
Our approach reminds behavior cloning [8],
however, it is applied not to the behavioral policy,
but to the Q-function.

Experience replay buffers can occupy an enor-
mous amount of computer memory. We tested seve-
ral approaches to decrease the buffer size. One of the
approaches is based on selective storage of the en-
countered states. The first option is to use only a cer-
tain amount of the latest states. The second option
is to use the subsampling of the states encountered
by an agent. We use the following algorithm for the
subsampling. On arrival into some state, we generate
a random key from the uniform distribution U[0, 1J.
The current state is added into the experience replay
buffer if the key is larger than B/f, where B is the
current buffer size, ¢ is the state’s order number. The
disadvantage of this option is that stored states are

&
o3

Pl

Fig. 1. The scheme of experience exchange between IAs. B; is the
experience replay buffer of i-th environment, .S is the batch of
states, T; is the teacher agent for the i-th environment, S7 is the
student agent, Q are the state-action values for the student and
teachers, [; is the loss function for the i-th environment
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not consecutive, which is a problem in the case of
partially observable states. The solution could be the
simultaneous storage of several consecutive states at
once. However, storing the series of states can lead to
the excessive use of computer memory. One another
approach to decrease the size of the buffer is to com-
press the representation of stored states. To perform
the compression, we use an autoencoder [13]. Auto-
encoders are standard instruments of machine lear-
ning for dimensionality reduction of data. The buffer
compressed by an encoder can be further restored by
the decoder and used for experience exchange be-
tween the agents.

Computational test

As an example of the application of the developed
multitask learning method, we used IAs trained to
play Atari games in OpenAl environment [19]. We
should note that the developed algorithm is general
and can be used in other environments and robotic
systems.

For experience exchange experiments, we trained
five agents on different Atari games. Image frames
received from the environments were stacked into
four frames per state following the original paper of
DeepMind [16]. This stacking is related to the fact
that each frame represents the partially observable
state (for example, the frame does not contain in-
formation about the speed of objects). Among five
environments, we chose the agents having the same
number of actions: two agents (Atlantis and Break-
out) had 4 action options; three agents (Demon At-
tack, Pong, and Up and Down) had 6 options for
action. As DQN learning is very time-consuming,
we trained the agents only to the level comparable
to human abilities to play these games. Maximum
points scored by the agents in different games are
shown in Table 1.

In the process of agents training, we stored the
replay buffer (105 states for Atlantis and Breakout
games, 2-10° states for Pong, Demon Attack, and

Table 1

Scored points for the environments used in the paper

Table 2
Dimensions of the replay buffers

. . Demon Up And

Environment Atlantis | Breakout Attack Pong Down
Amount of the states 4 4 21,4 0,8 14,6
in the buffer, 10°
The dimension of 26,29 26,29 | 140,63 | 5,26 | 95,94
the total buffer, Gb
The dimension of 0,95 0,95 5,1 0,2 3,48
the compressed
buffer, Gb

Up and Down games). These buffers served as the
base for later experience exchange. Different envi-
ronments require different times to achieve an opti-
mal score; this fact determines the different sizes of
stored buffer (Table 2).

During training, we used the batch consisting
of 16 states for every environment. To optimize the
gradient descent, we used the Adam optimizer [7]
with a learning rate 6,25-10~*. The number of itera-
tions of the algorithm was 10°.

The evaluation of the quality of the models was
performed as follows. In every environment, the
trained agent was tested ten times during 12 500
consecutive states. After that, we calculated the
mean and standard deviation for the points scored
during every test.

As an alternative to our method of experience
exchange, we tested offline learning. In this ap-
proach, the student agent learns the effective beha-
vior in two environments by training with the DQN
algorithm on a combined buffer of teacher agents.
This approach resulted in a fast loss of performance
in the previously learned environment and in the
absence of the learning progress in the new envi-
ronment (Table 3).

At the next stage, we tested the methods of expe-
rience exchange between IAs on the base of distil-
lation with additional buffer compression methods.

As the first option, we used an approach based on
storing only the part of the total buffer obtained dur-

Table 3

Comparison of the loss functions for Pong
and Up-and-Down games. The mean and standard deviation

Environment Random behavior | Human | DQN agent of the scored points are provided
Atlantis ~13 000 ~29 000 | ~3 000 000 Envi- Offline Mean Kullback- |Binary cross-
Breakout ) 30 350 ronment | learning | square loss | Leibler loss | entropy loss
Demon Attack ~150 ~3400 ~30 000 Pong —19,9 £ 5,05/ 15,50 £ 1,59(15,67 £ 0,93| 15,54 £ 0,86
Pong ~—21 ~9 ~20 Up and | 3878 + 186 |SI11 + 1256 | 4347 + 943 | 6336 + 886
Up And Down ~533 ~9 000 ~16 000 Down
MexaTponnka, asToMaTu3anus, ynpasienue, Tom 23, Ne 8, 2022 417



ing initial training. A large number of stored states
requires enormous computer memory to accommo-
date the whole buffer (Table 2). For example, the size
of the buffer for the Demon Attack game amounted
to 140 Gb. To decrease the size of the buffer, we used
8-10° latest states for every game. The output values
of Q-functions were modified with the argmax func-
tion (to single out the only action) or with the soft-
max function (to take into account the probability of
every action); the modified values were supplied into
the loss function. The best results were achieved with
the softmax function combined with binary cross-
entropy as a loss function. This combination allowed
the student agent to achieve scores comparable with
that of teacher agents (Table 3).

The use of the argmax function demonstrated
learning instability. During the initial epochs of
training, the agent adopted the ability to adequately
behave in two environments. However, during fur-
ther training, there occurred a surge in the loss func-
tion with the agent’s sudden loss of the ability to have
productive interaction with the environments.

Besides binary cross-entropy, we used mean-
square and Kullback-Leibler losses. As one can see
from Table 3, all these loss functions adequately
solve the problem.

The next option to decrease the buffer size is se-
lective storage of encountered states as was described
in the previous section. Each entry in the buffer con-

ENCODER
| 84 x 84 x 4 |
| 40x40x64 |
| 18x18x128 |
| 8x8x256 |
4x4x512
| 8192x1 |

[ 8192x1 |
| 8x8x256 |
| 18x18x128 |
| 40x40x64 |
[ 84 x 84 x 4 \
DECODER

Fig. 2. The architecture of the autoencoder used for the compression
of the states of the game environments

sisted of four consecutive states determined by their
partial observability. We collected two buffers 20 000
states each for games Pong and Up-and-Down.
When training on this subsampled buffer, the student
agent did not show high scores compared to training
on the final part of the total buffer. The following
scores were achieved: 13,66 x 0,86 for the Pong game
and 2804 + 255 for Up-and-Down.

The next method of decreasing the size of the
buffer was based on the transformation of the
frames of the games into a latent space of auto-
encoder. For every environment, the autoencoder
with latent space 64 was trained on the total buf-
fer (Fig. 2). Autoencoder was trained on batches
of 25 states. We used the Adam optimizer with a
learning rate 0,0005. All the states were compressed
with a coder and stored on a computer drive that
allowed to reduce the representation of the state
of the environment from 84 (int) X 84 (int) X 4 =
= 28 224 bytes down to 64 (float32) X 4 = 1024 bytes.
The autoencoder allowed to reduce the buffer size
by 27 times (Table 2); that way the buffer fully fitted
into computer memory. The process of experience
exchange had just a small modification: during the
training of the student agent, the stored states should
be decompressed with a decoder. After the training of
student agent on a compressed buffer, the efficiency
of its behavior became comparable to that of teacher
agents (Table 4). Table 4 shows the results for the
softmax function at the output of the network com-
bined with the binary cross-entropy loss function.
The only problem with the proposed method of buf-
fer compression is the limitations of the autoencoder:
the peculiarities of the autoencoder’s compression
could make it difficult to encode some essential parts

Table 4
The outcome of experience exchange

Student’s score | Student’s score
Teacher 1 , (training (training
Teacher 2 Teacher’s score on a part on latent re-

of the buffer) presentations)
Atlantis 271856 + 132507|233824 + 178721 180000 + 17200
Breakout 212,3 £ 45,3 199,9 + 52,8 8,4 £2
Demon 9251 + 3301 6169 + 2599 9284 + 2987
Attack
Up and 6608 + 918 4526 + 329 4892 + 470
Down
Pong 15,9 £ 1,43 15,54 + 0,86 15,43 £ 0,78
Up and 6607 £ 918 6336 = 886 6397 + 686
Down
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of an image. For example, for the Breakout game, the
autoencoder could not encode the image of the ball.
As a result, experience exchange did not work for this
particular case.

Conclusion

We proposed and tested the variant of behavior
cloning where Q-function is used instead of policy.
The behavior cloning in our case had the additional
feature: with our method, the student agent learned
the behavior of a teacher agent without losing the
ability to perform previously learned tasks. This
was achieved by utilizing both the teacher’s and
its own experience replay buffers. The outcomes
of experience exchange are shown in Table 4. One
can see that the performance of student agents is
comparable to that of teachers. One can conclude
that our method successfully handles catastrophic
forgetting and can be used in multitask reinforce-
ment learning.

The methods of decreasing the dimensions of ex-
perience replay buffer (using the latest encountered
states or using the latent representations) allowed to
significantly reduce the usage of computer memory
without the significant deterioration of the accuracy
of experience exchange. The use of latent features
allowed to decrease the amount of memory for stor-
ing the buffer. However, it increased the time of
agent’s training as the states should have been first
decompressed to be used in knowledge distillation.
This method had additional limitations due to the
peculiarities of the encoding-decoding procedure.
To be used in full, the autoencoder’s compression
quality needs further improvements.
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