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Abstract

The paper is dedicated to the problem of finding optimal spacecraft trajectories. The equations of spacecraft motion are written 
in quaternion form. The spacecraft moves on its orbit under acceleration from the limited in magnitude jet thrust. It is necessary 
to minimize the energy costs for the process of reorientation of the spacecraft orbital plane. The equations of spacecraft motion are 
written in orbital coordinate system. It is assumed that spacecraft orbit is circular and control has constant value on each part of 
active spacecraft motion. In this case the lengths of the sections of the spacecraft motion are unknown. We need to find the length of 
each section, their quantity and value of control on each section. The equations of the problem were written in dimensionless form. It 
simplifies the numerical investigation of the obtained problem. There is a characteristic dimensionless parameter in the phase equations 
of the problem. This parameter is a combination of dimension variables describing the spacecraft and its orbit. Usually the problems 
of spaceflight mechanic are solved with the maximum principle. And we have to solve boundary value problems with some kind of 
shooting method (Newton’s method, gradient descent method etc.) Each shooting method requires initial values of conjugate variables, 
but we have no analytical formulas to find them. In this paper spacecraft flight trajectories were found with new genetic algorithm. 
Each gene contains additional parameter which equals to "True", if the gene forms the control and equals to "False" othe rwise. It 
helps us determine t he quantity of spacecraft active motion parts. The input of proposed algorit hm does not contain information about 
conjugate variables. It is well-known that the differential equations of the problem have a partial solution when the spacecraft orbit is 
circular and control is constant. The genetic algorithm involves this partial solution and its speed is increased. Numerical examples 
were constructed for two cases: when the difference between angular variables for start and final orientations of the spacecraft orbital 
plane equals to a few (or tens of) degrees. Final orientation of the spacecraft plane of orbit coincides with GLONASS orbital plane. 
The graphs of components of the quaternion of orientation of the orbital coordinate system, the longitude of the ascending node, the 
orbit inclination and optimal control are drawn. Tables were constructed showing the dependence of the value of the quality functional 
and the time spent on the reorientation of the orbital plane on the maximum length of the active section of motion.
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Работа посвящена нахождению оптимальных траекторий полета космического аппарата. Уравнения движения 
записаны в кватернионной форме в орбитальной системе координат. Космический аппарат движется по своей орбите 
под действием ограниченного по модулю реактивного ускорения от тяги двигателя. Требуется уменьшить затраты 
энергии на перевод плоскости орбиты космического аппарата в заданное положение. Предполагается, что орбита кос-
мического аппарата круговая, а управление постоянно на соседних участках активного движения. В этом случае длины 
участков активного движения аппарата неизвестны. Необходимо найти длину каждого активного участка движения 
космического аппарата, их число и величину управления на каждом участке. Уравнения задачи были записаны в безраз-
мерной форме. Это упрощает численное исследование задачи. В фазовых уравнениях задачи возник характерный без-
размерный параметр. Он является комбинацией размерных величин, описывающих космический аппарат и его орбиту. 
Обычно задачи механики космического полета решаются с помощью принципа максимума. При этом для численного ре-
шения применяются различные модификации метода пристрелки (метод Ньютона, метод градиентного спуска и т. д.).
Эти методы требуют хотя бы приблизительно указать начальные значения сопряженных переменных, но нам неиз-
вестны аналитические формулы для того, чтобы их найти. В настоящей работе траектории движения космического 
аппарата были найдены с помощью нового генетического алгоритма. При этом каждый ген содержит дополнительный 
параметр, который показывает, формирует ли данный ген оптимальное управление или нет. Это помогает определить 
число активных участков движения космического аппарата. Входные данные предложенного алгоритма не содержат 
информацию о сопряженных переменных. Известно, что дифференциальные уравнения задачи имеют частное решение 
в случае, когда орбита круговая, а управление постоянно. Построенный генетический алгоритм использует это ре-
шение, что ускоряет его работу. Примеры численного решения задачи построены для двух вариантов, когда разница 
между угловыми переменными, соответствующими начальной и конечной ориентациям орбит космического аппарата, 
составляет единицы (или десятки) градусов. Конечное положение плоскости орбиты космического аппарата соответ-
ствует орбитальной плоскости отечественной группировки ГЛОНАСС. Построены графики изменения компонент ква-
терниона ориентации орбитальной системы координат, долготы восходящего узла, наклонения орбиты и оптимального 
управления. Получены таблицы, показывающие зависимость функционала качества и длительности переориентации 
орбиты от максимальной длины одного участка активного движения космического аппарата.

Ключевые слова: космический аппарат, орбитальная плоскость, траекторная оптимизация, оптимальное управ-
ление, кватернионные уравнения, хромосома

Introduction

This paper is dedicated to finding optimal space-
craft flights between circular orbits. During the 
spacecraft motion its orbit is an unchangeable figure. 
We were taken into account this actual special case 
because the orbits of various satellite groups (for ex-
ample GLONASS and GPS) are close to circular. 
The spacecraft is a material point of a variable mass 
and it moves in the orbital coordinate system. The 
origin of this system coincides with the spacecraft 
center of mass. It is necessary to find the optimal law 
of changing the value of acceleration from jet thrust 
which moves spacecraft orbital plane from its initial 
state to desired one. Also we have to minimize the 
energy consumption for this reorientation.

Many scientists simplify problem of spacecraft 
interorbital flights considering only the case of co-
planar flights. In this case we can solve the problem 
analytically (i.e. we can accurately or approximate-
ly find optimal spacecraft trajectories). There are 
a significant number of publications in this area. 
Note that it is very hard to solve the task when 
control has points of discontinuity (for example the 
fast-response problem, see papers [1—4]). Usually 
authors minimize energy cost or the characteristic 
velocity (refer to the papers [5—10]).

Also interorbital spacecraft flights were investi-
gated by Ishkov S. A. and Romanenko V. A. [11]; 
Kamel O. M. and Mabsout B. E. [12, 13]; Miele A. 
and Wang T. [14].

Usually authors were written equations of mo-
tion in angular elements (or Cartesian coordinates). 

Also they were often considered spacecraft flights 
between closed to each other orbits (or co-planar).

In these papers analytical investigations of opti-
mal control problems were done with the L. S. Pon-
tryagin maximum principle. Numerical solution of 
the obtained boundary value problems involved 
some kind of shooting method. But there are no 
initial approximations of the conjugate variables for 
boundary value problems of this type. Also shooting 
methods do not converge well and often find only 
local minima of minimized function. In this paper 
we constructed new genetic algorithm to find opti-
mal trajectories of the spacecraft interorbital flights.

The paper is organized as follows. In sec. 1 space-
craft equations of motion are described. The statement 
of the problem is presented in sec. 2. Original genetic 
algorithm of spacecraft plane reorientation is delivered 
in sec. 3. Sec. 4 presents application of the genetic 
algorithm to the case when final position of spacecraft 
corresponds to the orientation of GLONASS satellites 
grouping system. The paper is ended with conclusion 
which presents prospective works.

1. Equations of motion

The motion of a spacecraft, which is considered 
as a material point B of a variable mass, is studied 
in the geocentric equatorial system of coordinates 
OX1X2X3 (X) with its origin at the Earth’s center of 
attraction O. The OX3 axis of the system is directed 
along the axis of the Earth’s diurnal rotation, the 
OX1 and OX2 axes lie in the equatorial plane, the 
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OX1 axis is directed toward the point of the vernal 
equinox, and the OX2 axis completes the system as a 
set of three vectors at right angles. Control u is the 
vector of jet acceleration. It is orthogonal to the or-
bital plane. In this case spacecraft orbit does not its 
form and dimensions during the motion in the space.

The spacecraft motion is investigated in the or-
bital system of coordinates Bη1η2η3(η). Spacecraft 
center of mass is the origin of this system. The first 
axis η1 of this coordinate system is directed along 
the radius vector r of a spacecraft, and the axis η3 
is aligned with the vector of spacecraft velocity mo-
ment c = rЅr• = rЅv. The angular position of the 
η coordinate system is specified in the geocentric 
equatorial system of coordinates by the normalized 
quaternion l [15]

 l = λ0 + λ1i1 + λ2i2 + λ3i3,

 ||l||2 = (λ0)
2 + (λ1)

2 + (λ2)
2 + (λ3)

2 = 1.

Here i1, i2 and i3 are the unit vectors of a hy-
per-complex space (Hamilton imaginary units); λj
( j = 0, 1, 2, 3) are the components of the quaternion 
l (parameters of Rodrigue-Hamilton (Euler)). The 
components λj are identical in the basis sets X and η.

The relation between quaternion l and quater-
nion L of the spacecraft orbit orientation is given by 
the formula

 l = Lé[cos(ϕ/2) + i3 sin(ϕ/2)].

Here the symbol "é" means quaternion multipli-
cation and ϕ is the true anomaly (it characterizes 
the spacecraft position on its orbit).

Let us denote as ωk, ck, and uk (k = 1, 2, 3) 
the projections of the vector of the absolute angular 
velocity w of the η coordinate system and of the 
vectors c and u onto the axes of the η coordinate 
system. These quantities are subject to the following 
relations (r = |r|)

 u1 = u2 = 0, u3 = u, c1 = c2 = 0, c3 = c,
 ω1 = ur/c, ω2 = 0, ω3 = cr–2.

Let us write equations of motion in the rota-
ting coordinate system η using the variables r, c, λj
( j = 0, 1, 2, 3) [16]

 2λ0
• = –ω1λ1 – ω3λ3, 2λ1

• = ω1λ0 + ω3λ2,
 2λ2

• = –ω3λ1 + ω1λ3, 2λ3
• = ω3λ0 – ω1λ2, (1.1)

 r = p(1 + ecosϕ)–1, c = const, ϕ• = cr–2, (1.2)

where p and e are the orbit parameter and eccentricity.
Subsystem (1.1) can be written in the quaternion 

form

 2l• = léwη, wη = ω1i1 + ω3i3 = (ur/c)i1 + (cr–2)i3,

where the quaternion wη is the mapping of the 
vector w onto the basis set η.

Note that when r = const (in the case of a circu-
lar orbit) and u = const, (1.1) are linear differential 
equations with constant coefficients. Therefore (1.1) 
is very convenient and effective from the analyti-
cal point of view. In this paper the problem of the 
optimal reorientation of a spacecraft orbit is inves-
tigated using (1.1) and (1.2).

We can use angular elements of an orbit (they 
characterize the orientation of the spacecraft in-
stantaneous orbit in space) and the true anomaly to 
find the components λj of the quaternion l. Let us 
denote the longitude of the ascending node as Ωu, 
the orbit inclination as I and the pericenter angular 
distance as ωπ.

Then we have

 λ0 = cos(I/2)cos((Ωu + ωπ + ϕ)/2),
 λ1 = sin(I/2)cos((Ωu—ωπ—ϕ)/2),
 λ2 = sin(I/2)sin((Ωu—ωπ—ϕ)/2),
 λ3 = cos(I/2)sin((Ωu + ωπ + ϕ)/2). (1.3)

Let us write (1.3) in the quaternion form

 l = [cos(Ωu/2) + i3sin(Ωu/2)]é[cos(I/2) +
 + i1sin(I/2)]é[cos((ωπ + ϕ)/2) + i3sin((ωπ + ϕ)/2)].

For comparison we write below the equations in 
angular osculating elements [17, 18], which are usu-
ally used in astrodynamics instead of (1.1)

 Ωu
• = u(r/c)sinΣ cscI, I• = u(r/c)cosΣ,

 ωπ
• = u(r/c)sinΣ cotI,

where Σ = ωπ + ϕ (latitude argument).
Note that when r = const (in the case of a cir-

cular orbit) and u = const, (1.1) is a linear differen-
tial equation with constant coefficients. Therefore 
equations (1.1) are very convenient and effective 
from the analytical point of view. In this paper the 
problem of the optimal reorientation of a spacecraft 
orbital plane is investigated using (1.1) and (1.2).

2. Statement of the problem

It is required to transfer spacecraft whose motion 
is described by equations (1.1), (1.2) from specified 
initial state:

 t = t0 = 0, ϕ(0) = ϕ0,
 l(0) = l(0) = L0é(cos(ϕ0/2) + i3 sin(ϕ0/2)) (2.1)

into the final state (the final time t* is unknown and 
we have to determine it)
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 t = t* = ?, ϕ(t*) = ϕ*,
 tan Ωu

* = (λ1λ3 + λ1λ2)/(λ0λ1 – λ2λ3),
 cos I  * = (λ0)

2 – (λ1)
2 – (λ2)

2 + (λ3)
2 (2.2)

with the bounded (in magnitude) piecewise constant 
control (k = 1, 2, ..., M)

 u(t) = uk, если tk-1 m t m tk. (2.3)

Also we have to minimize the functional

 
*

2

0

.
t

J u dt= ∫  (2.4)

Note that in contrast to the papers [19, 20]; the 
quantity of active motion parts M is not given. We 
have to determine this quantity. It is known [16] 
that in this case, the control that maximizes the 
Hamilton-Pontryagin function has the form (2.3).

Here constant angular elements Ωu
*, I* describe 

the final orientation of the spacecraft orbital plane. 
The values of c, p, e, L0, ϕ0, Ωu

* and I* are assumed 
to be specified. And we have to find all uk, (k = 1, 
2, ..., M) which are values of control on adjacent 
parts of spacecraft active motion. Also we have to 
determine the lengths of these parts Δk = tk – tk–1 
(k = 1, 2, ..., M).

Functional (2.4) corresponds to the value of en-
ergy consumption for a spacecraft interorbital flight.

Note that, in contrast to the paper [21], the final 
value of the pericenter angular distance is not fixed. 
So the position of the final orbit in its plane may 
be arbitrary.

3. Numerical algorithm

All equations and relations of the obtained bound-
ary value problem were written in the dimensionless 
form. The relations between dimensionless variables 
and its dimension analogues are given by the formu-
las: r = Rr dl, t = Ttdl, u = umaxu

dl. Here R is a scale 
factor for distance (R is close to the major semi-axis 
of the spacecraft orbit), V is a scale factor for velocity, 
C is a scale factor for sector velocity, and T is a scale 
factor for time, determined by following formulas
V = ( fM/R)1/2, C = RV and T = R/V. Also there is 
a dimensionless parameter Nb = umaxR

3/C2 in the 
equations describing the spacecraft and its orbit.

The equations of the motion of the spacecraft 
center of mass take the following dimensionless 
form (superscripts "dl" are omitted)

 2l• = léwη, wη = Ni1 + r–2i3,
 ϕ• = cr–2, r = (1 + ecosϕ)–1.

The dimensionless optimal control is subject to 
condition –1 m u m 1.

Earlier in paper [22] the posed problem was solved 
with the help of the Pontryagin maximum principle. 
As a result of the maximum principle application,
a boundary value problem with a movable right end 
was obtained. It was solved numerically using the 
shooting method [23]. It is known that we have no 
analytical expressions for conjugate variables in this 
problem. Various kinds of shooting method do not 
converge well and usually find only local minima of 
minimized functions. In this paper we constructed 
a new genetic algorithm; it does not involve conju-
gate variables. Note that classical genetic algorithms 
deal with chromosomes of the same length. But in 
our problem the quantity of spacecraft active motion 
parts (the length of chromosome) is not given. To 
construct algorithm for variable chromosome length 
we use the approach proposed in [24, 25].

Note that direct methods of optimization that 
do not require conjugate equations were considered, 
for example, in [26, 27]. The main stages of our 
algorithm were taken from [28].

Let the spacecraft orbit is circular (i.e. e = 0 and
r = 1). Note that the eccentricity of orbits of the 
satel lite groups GLONASS and GPS is close to zero.

At the first step we randomly generate a popula-
tion of Nmax chromosomes (Nmax is even). Each of 
them equals to M three-element groups: (uk, Δk, bk), 
(k = 1, 2, ..., M). Here Δk = tk – tk-1 is the length 
of k-th active motion part; bk equals to "True", if 
the gene forms the control and bk equals to "False" 
otherwise. Genetic algorithms usually deal with an 
integer numbers so we should not store in the me-
mory real numbers uk and Δk. Gene is formed by in-
teger numbers uk

int and Δk
int, (0 m uk

int, Δk
intm 2L – 1). 

The relationship between integer and real numbers 
is given by the formula

 uk = –1 + 2uk
int/(2L – 1), Δk = ΔTmaxuk

int/(2L – 1).

Here ΔTmax is the given maximum duration of 
active motion part.

It is necessary to introduce the effective length of 
the chromosome 0 < Meff m M. Meff is the number 
of chromosome genes involved in control forma-
tion, i.e. the number of groups whose last element is 
equal to "True".

Thus, the proposed algorithm will be used to 
search for a solution, provided that the number of ac-
tive sections of spacecraft motion does not exceed M.

At the second stage we compute the final orien-
tation of the orbital plane for each chromosome by 
the well-known formula [29]:

 l(tk) = l(tk–1)é(cos(0.5ωΔk) + ω–1sin(0,5ωΔk)w
b),

 wb = (Nubrb)i1 + i3, ω = |wb| = const (3.1)
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with initial conditions (2.1) (control corresponds to 
chosen individual). Fitness function is given by the 
formula

 err(t) = {[tan Ωu
* – (λ1λ3 + λ1λ2)/(λ0λ1 – λ2λ3)]

2 +

 + [cosI  * – (λ0)
2 + (λ1)

2 + (λ2)
2 – (λ3)

2]2}0.5.

The fitness function equals to zero at the point
t = t* when the conditions (2.2) are satisfied.

The value of the fitness function is smaller for 
the chromosome describing more fitting candidate 
solution. When this value is less than the given small 
number ε then the algorithm stops, because we have 
found the optimal control for our set of parameters. 
The maximum number of iterations should not ex-
ceed Niter

max.
At the third stage the half of the chromosomes 

with the highest (worst) values of the fitness function 
is discarded. Then we should cross the chromosome 
with the lowest value of the fitness function with 
all the others. Two chromosomes with k-th genes
(uk

int1, Δk
int1, bk

1) and (uk
int2, Δk

int2, bk
2) are crossed 

using the intermediate recombination [28]. Corre-
sponding child gene (uk

intr, Δk
intr, bk

r) is created by the 
formula (–0.25 < αk < 1.25):

 uk
intr = uk

int1 + αk(uk
int2 – uk

int1),

 Δk
intr = Δk

int1 + αk(Δk
int2 – Δk

int1), bk
r = bk

1 ∨ bk
2.

Each gene has different random number αk. 
The resulting child genes are integers from the in-
terval [0; 2L – 1]. After crossing we will get a new 
population from Nmax chromosomes. Note that in 
this case, the effective length of the child chro-
mosome (the quantity of active parts of spacecraft 
motion) will not be less than the effective length 
of the parent’s chromosomes. In order to decrease 
this quantity, we should sometimes change the 
logical operator in crossover to the exclusive dis-
junction (⊕) instead of the inclusive disjunction 
operator (∨).

We should change one logical operator to an-
other with probability 1/2.

At the last step of the algorithm the fitness func-
tion is averaged for new population. If it is increased, 
then individuals in the population will mutate. The 
rule of mutation is following: genes are written in 
binary form and randomly selected bit of each gene 
is inverted with probability pmut ∈ (0; 1]. After this 
we should return to the second step of the algorithm.

We should generate solution for a few initial pop-
ulations and then we have to choose the one that 
corresponds to the reorientation of the spacecraft 
orbital plane with less energy consumption.

4. Examples of numerical solution of the problem

The quantities characterizing the forms and di-
mensions of spacecraft orbit, initial and final ori-
entations of spacecraft orbit are equal to (aor is the 
semi-major axis of an orbit; Ωu

0 = Ωu(0), I 
0 = I(0), 

ωπ
0 = ωπ(0); Ωu

* = Ωu(t
*), I * = I(t*)) [21]:

 aor = 37936238.7597 m,
 umax = 0.101907 m/sec2, Nb = 0.35;

final spacecraft position (it corresponds to the 
orientation of the orbital plane of GLONASS 
satellites): Ωu

* = 215.25é, I* = 64.8é; initial spacecraft 
position (ϕ0 = 2.954779 rad):

variant 1 (small difference between initial and 
final spacecraft orbits):

 Ωu
0 = 212.0é, I  0 = 63.0é, ωπ

0 = 0.0é;
 Λ0

* = –0.235019, Λ1
* = –0.144020,

 Λ2
* = 0.502258, Λ3

* = 0.819610;
 λ0

* = –0.663730, λ1
* = 0.518734,

 λ2
* = –0.062608, λ3

* = –0.535217;

variant 2 (big difference between initial and final 
spacecraft orbits):

 Ωu
0 = 240.0é, I0 = 45.0é, ωπ

0 = 0.0é;
 Λ0

* = –0.461940, Λ1
* = –0.191342,

 Λ2
* = 0.331414, Λ3

* = 0.800103;
 λ0

* = –0.557524, λ1
* = 0.379734,

 λ2
* = 0.047420, λ3

* = –0.736696;

Scaling factors are equal to R = 26 000 000 m, 
V = 2751.405874 m/sec, T = 9449.714506 sec. These 
parameters of spacecraft motion were taken from [30].

The parameters of the genetic algorithm were 
equal to L = 100, Nmax = 10000, pmut = 0.9.

Table 1

Results of the genetic algorithm (variant 1)

ΔTmax Meff t* J

0.3 3 0.403261 0.080510

0.4 3 0.475630 0.064673

0.5 2 0.523537 0.060166

0.6 3 0.503634 0.061228

0.7 2 0.504410 0.060858

0.8 2 0.534701 0.059792

0.9 2 0.477408 0.062733

1.0 2 0.941512 0.065030

1.5 2 1.122376 0.071938

2.0 2 0.649684 0.061406

2.5 2 0.527765 0.062669
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In table 1 the results of the numerical solution 
of the problem for different values of the maximum 
duration of active motion part ΔTmax are presented 
(variant 1). Earlier in the paper [19] less optimal 
solution for this variant was found. When the final 
time t* and the quantity of active parts were fixed, 
the minimal value of the functional J was equal 
to 0.060134. The genetic algorithm proposed in the 
present article can determine the duration of the 
flight and now the minimal value of the functional 
equals to 0.059792.

Figure 1 presents the results of numerical solu-
tion of the problem of reorientation of the spacecraft 
orbital plane for ΔTmax = 0.8 when the functional J 
reaches its minimal value. Here the time of flight 
of the controlled spacecraft equals to 5052.771796 s. 
(1.403547 h.).

The longitude of the ascending node and the or-
bit inclination are in degrees, all other quantities 
are dimensionless. We can see that graphs of behav-
ior of the angular elements of the spacecraft orbit 
are close to linear on both parts of active spacecraft 
motion. Also the components of quaternion l are 
slowly varying functions.

Note that the use of analytical formulas (3.1) in-
stead of numerical integration of equations (1.1) by 
Runge-Kutta method can significantly speed up the 
algorithm. While maintaining an acceptable dura-
tion of calculations, it becomes possible to increase 
the number of individuals in the population by sev-
eral orders of magnitude and find a solution to the 
problem faster.

In table 2 the results of the numerical solution of 
the problem for variant 2 are presented.

Figure 2 presents the results of numerical solu-
tion of the problem of reorientation of the spacecraft 
orbital plane for ΔTmax = 0.6 when the functional J 
reaches its minimal value. Here the time of flight of 
the controlled spacecraft equals to 23772.542836 s.
(6.603484 h.).

It was found that in this case ranges of variation of 
the components of the quaternion of orientation of the 
orbital coordinate system are bigger than in the case 
of small difference between initial and final orbits.

Note that in this case the graph of behavior of 
the orbit inclination is close to linear only on the 
last part of the spacecraft active motion.

The longitude of the ascending node is close to 
its desired value at t = 1.703. But the inclination at 
this point equals to 53.573é.

Fig. 1. Circular orbit, variant 1:
a — Components of the quaternion of orientation of the orbital 
coordinate system; b — The longitude of the ascending node; c — 
The orbit inclination; d — Optimal control

Fig. 2. Circular orbit, variant 2:
a — Components of the quaternion of orientation of the orbital 
coordinate system; b — The longitude of the ascending node; c — 
The orbit inclination; d — Optimal control

Table 2

Results of the genetic algorithm (variant 2)

ΔTmax Meff t* J

0.3 8 2.209146 1.521154

0.4 6 2.346797 1.436910

0.5 5 2.266918 1.410721

0.6 7 2.515689 1.345384

0.7 5 2.452568 1.422379

0.8 4 2.550990 1.588569

0.9 4 2.350388 1.442013

1.0 4 2.909870 1.433450

1.5 4 2.790892 1.350903

2.0 3 2.641818 1.352611

2.5 3 2.224977 1.455960
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Also we should note that in this case (variant 2) 
the number of active motion parts is bigger than in 
the case when the difference between angles that 
describe initial and final spacecraft orbit equals to a 
few degrees (variant 1).

Conclusion

In this paper we discussed the problem of circu-
lar spacecraft orbit reorientation for the case when 
the final time of the process is not given. The con-
structed numerical algorithm is able to quickly find 
quasi-optimal spacecraft trajectories. Examples of 
numerical solution show its efficiency. The advan-
tage of suggested algorithm compared to the shoot-
ing method is that we do not have to choose initial 
approximations for the unknown values of conjugate 
variables. Next time we will try to modify the pro-
posed algorithm to deal with elliptical orbit. Also 
we plan to apply genetic algorithm to the case when 
the control u is not orthogonal to the orbit’s plane. 
In this more complicated case spacecraft orbit will 
change its form and dimensions.
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