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Genetic Algorithm of Energy Consumption Optimization
for Reorientation of the Spacecraft Orbital Plane

Abstract

The paper is dedicated to the problem of finding optimal spacecraft trajectories. The equations of spacecraft motion are written
in quaternion form. The spacecraft moves on its orbit under acceleration from the limited in magnitude jet thrust. It is necessary
to minimize the energy costs for the process of reorientation of the spacecraft orbital plane. The equations of spacecraft motion are
written in orbital coordinate system. It is assumed that spacecraft orbit is circular and control has constant value on each part of
active spacecraft motion. In this case the lengths of the sections of the spacecraft motion are unknown. We need to find the length of
each section, their quantity and value of control on each section. The equations of the problem were written in dimensionless form. It
simplifies the numerical investigation of the obtained problem. There is a characteristic dimensionless parameter in the phase equations
of the problem. This parameter is a combination of dimension variables describing the spacecraft and its orbit. Usually the problems
of spaceflight mechanic are solved with the maximum principle. And we have to solve boundary value problems with some kind of
shooting method (Newton’s method, gradient descent method etc.) Each shooting method requires initial values of conjugate variables,
but we have no analytical formulas to find them. In this paper spacecraft flight trajectories were found with new genetic algorithm.
Each gene contains additional parameter which equals to "True”, if the gene forms the control and equals to "False" otherwise. It
helps us determine the quantity of spacecraft active motion parts. The input of proposed algorithm does not contain information about
conjugate variables. It is well-known that the differential equations of the problem have a partial solution when the spacecraft orbit is
circular and control is constant. The genetic algorithm involves this partial solution and its speed is increased. Numerical examples
were constructed for two cases: when the difference between angular variables for start and final orientations of the spacecraft orbital
plane equals to a few (or tens of) degrees. Final orientation of the spacecraft plane of orbit coincides with GLONASS orbital plane.
The graphs of components of the quaternion of orientation of the orbital coordinate system, the longitude of the ascending node, the
orbit inclination and optimal control are drawn. Tables were constructed showing the dependence of the value of the quality functional
and the time spent on the reorientation of the orbital plane on the maximum length of the active section of motion.
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Paboma nocesujena HaxoxncoeHUr) ONMUMANLHBIX MPACKMOPUL NOAemMAa KOCMUYeCK020 annapama. Ypasnenus 08ujiceHus
3ANUCAHbL 8 K8AMEPHUOHHOU hopme 6 opoumanvHol cucmeme Koopournam. Kocmuveckuii annapam dguxcemces no ceoeli opoume
noo delicmeuem 02paHU4eHHO20 N0 MOOYAK PeaKmMUBHO20 YCKOpeHUus om mseu deueamens. TpeGyemcs ymeHvwUums 3ampamol
JHepeuu Ha nepeeood NAOCKOCMU 0pOUmMbl KOCMUYECK020 annapama 6 3a0anHoe noaoxcenue. Ilpednonaeaemces, umo opouma koc-
MUHECK020 annapama Kpy208as, a ynpasieHue NOCMosSHHO HA COCEOHUX YHACMKAX aKMUBHO20 0suUdiceHUs. B amom cayuae Oaunbl
Y4AcCmKO08 aKmueH020 08UdCeHUs annapama Heudgecmuusl. Heobxodumo naiimu 0auny Kaxc0oeo aKkmueHo2o yuacmrka 08UNCeHUs
KOCMU"ECK020 annapama, ux Yucio U 6eAudUHy YnpasieHus Ha Kaxcoom yuacmie. Ypaeuenus 3adavu 0viau 3anucausl 6 6e3pas-
MepHoU gopme. Imo ynpoujaem uucieHHOe uccaedoganue 3aoavu. B ¢azoevix ypaenenusx 3adauu 603HUK XapakmepHuill 6e3-
paszmepHoiti napamemp. OH seasemcs KOMOUHAYUe pa3MePHbIX 8eAUYUH, ONUCHIGAIOWUX KOCMUUECKUU annapam u e2o opoumy.
O0bi4HO 304U MEXAHUKU KOCMUYECK020 NONeMA PeUamcs ¢ NOMOUbI0 npuyuna makcumyma. Ilpu smom 04 uucaenHoeo pe-
WeHUs NPUMEHSAIOMCS PA3AuUHble MOOUPUKayuu memoda npucmpeiku (memod Heromowna, memoo epaduenmuoeo cnycka u m. 0.).
Dmu memodsr mpebyom xoms 0bl NPUOAUSUMENbHO YKA3AMb HAYAAbHbIE 3HAYEHUS CONPANICCHHbIX NEPeMEHHbIX, HO HAM Heus-
6ecmHyl aHarumuveckue opmyast 045 moeo, ymobvl ux Haumu. B nacmosweii pabome mpaexmopuu 08udiceHUss KOCMUYECK020
annapama Oviau HatlOeHbl ¢ NOMOUbIO HOB020 2eHemuuecko2o areopumma. Ilpu smom Kaxcowill 2ex cooepiucum 0ONnOAHUMENbHbLU
napamemp, KOmopuli noKasvleaem, hopmupyem U OQHHbLL 2eH ONMUMAAbHOE YRPAGAeHUe Ul Hem. Dmo nomozaem onpedesums
YUCN0 AKMUBHBIX YHACMEKO08 08UNCEHUS KOCMUtecK020 annapama. Bxodnsie dannbie npedaoicenno2o aseopumma e codepicam
UHpOpMayUIo 0 conpsdceHHbIX nepemennblx. M3eecmuo, umo duggepenyuanvHolie ypagHenus 3a0auu umMeom 4acmuoe peueHue
6 cayuae, Koeda opbuma Kpyeoeas, a ynpasienue nocmosnno. Iocmpoennuili eenemuuecKuii aieopumm UCHOAb3Yem MO pe-
wenue, umo yckopsem e2o paoomy. [Ipumepst uucieHHO20 peuieHus 3a0auu ROCMpPoeHbl 04 08YX 6ApUAHMO8, K020a pa3HUYa
MexHcoy Yen08viMu nepemMeHHbIMU, COOMEEMCMEYIOWUMU HAYAAbHOU U KOHEUHOU OPUeHMAyUsIM 0pOUm KOCMU4eckKko2o annapama,
cocmagasiem eduHuybl (uau decamku) epadycos. Koneunoe nonodicenue naockocmu opoumel KOCMU4eCK020 annapama coomeem-
cmeyem opoumanvuou naockocmu omeyecmeernou epynnuposku IJIOHACC. Ilocmpoenst epagpuku uzmenenus KOMNOHEHM K8a-
MepHUOHA OpUeHmayuy opoUmanbHoOU cucmemsl KOOPOUHAm, 00420Mbl 60CX00AU,e20 Y31d, HAKAOHEHUs OpOUMbl U ONMUMAABHOO
ynpaeaenus. [loayyensr mabauysi, noKasviearuue 3a8UCUMOCMb YHKYUOHANA KA4eCcmea U OAUMEAbHOCMU NepeopueHmayuu
opoumbL 0OM MAKCUMAALHOU OAUHBL 00HO20 YUACMKA AKMUBHO020 08UNCEHUS KOCMUHECK020 annapama.

Karoueewie caoea: kocmuueckuii annapam, 0p6umaﬂbﬂaﬂ NA0CKOCMb, MPAeKmopHas onmumusayus, onmumanibHoe ynpae-

JN€eHUe, K6AMEPHUOHHblE YDABHEHUA, XPOMOCOMA

Introduction

This paper is dedicated to finding optimal space-
craft flights between circular orbits. During the
spacecraft motion its orbit is an unchangeable figure.
We were taken into account this actual special case
because the orbits of various satellite groups (for ex-
ample GLONASS and GPS) are close to circular.
The spacecraft is a material point of a variable mass
and it moves in the orbital coordinate system. The
origin of this system coincides with the spacecraft
center of mass. It is necessary to find the optimal law
of changing the value of acceleration from jet thrust
which moves spacecraft orbital plane from its initial
state to desired one. Also we have to minimize the
energy consumption for this reorientation.

Many scientists simplify problem of spacecraft
interorbital flights considering only the case of co-
planar flights. In this case we can solve the problem
analytically (i.e. we can accurately or approximate-
ly find optimal spacecraft trajectories). There are
a significant number of publications in this area.
Note that it is very hard to solve the task when
control has points of discontinuity (for example the
fast-response problem, see papers [1—4]). Usually
authors minimize energy cost or the characteristic
velocity (refer to the papers [S—10]).

Also interorbital spacecraft flights were investi-
gated by Ishkov S. A. and Romanenko V. A. [11];
Kamel O. M. and Mabsout B. E. [12, 13]; Miele A.
and Wang T. [14].

Usually authors were written equations of mo-
tion in angular elements (or Cartesian coordinates).

Also they were often considered spacecraft flights
between closed to each other orbits (or co-planar).

In these papers analytical investigations of opti-
mal control problems were done with the L. S. Pon-
tryagin maximum principle. Numerical solution of
the obtained boundary value problems involved
some kind of shooting method. But there are no
initial approximations of the conjugate variables for
boundary value problems of this type. Also shooting
methods do not converge well and often find only
local minima of minimized function. In this paper
we constructed new genetic algorithm to find opti-
mal trajectories of the spacecraft interorbital flights.

The paper is organized as follows. In sec. 1 space-
craft equations of motion are described. The statement
of the problem is presented in sec. 2. Original genetic
algorithm of spacecraft plane reorientation is delivered
in sec. 3. Sec. 4 presents application of the genetic
algorithm to the case when final position of spacecraft
corresponds to the orientation of GLONASS satellites
grouping system. The paper is ended with conclusion
which presents prospective works.

1. Equations of motion

The motion of a spacecraft, which is considered
as a material point B of a variable mass, is studied
in the geocentric equatorial system of coordinates
OX, X, X; (X) with its origin at the Earth’s center of
attraction O. The OXj axis of the system is directed
along the axis of the Earth’s diurnal rotation, the
OX, and OX, axes lie in the equatorial plane, the
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OX, axis is directed toward the point of the vernal
equinox, and the OX, axis completes the system as a
set of three vectors at right angles. Control u is the
vector of jet acceleration. It is orthogonal to the or-
bital plane. In this case spacecraft orbit does not its
form and dimensions during the motion in the space.

The spacecraft motion is investigated in the or-
bital system of coordinates Bnm,n;(n). Spacecraft
center of mass is the origin of this system. The first
axis m; of this coordinate system is directed along
the radius vector r of a spacecraft, and the axis n;
is aligned with the vector of spacecraft velocity mo-
ment ¢ = rXr- = rxv. The angular position of the
n coordinate system is specified in the geocentric
equatorial system of coordinates by the normalized
quaternion A [15]

)\, = ko + 7\,1i1 + 7\.2i2 + 7\,3i3,
A2 = () + ()* + () + (Ay)* = L.

Here i, i, and iy are the unit vectors of a hy-
per-complex space (Hamilton imaginary units); A
(j=0, 1, 2, 3) are the components of the quaternion
A (parameters of Rodrigue-Hamilton (Euler)). The
components }; are identical in the basis sets X and .

The relation between quaternion A and quater-
nion A of the spacecraft orbit orientation is given by
the formula

A = Ac[cos(p/2) + i3 sin(p/2)].

Here the symbol "o" means quaternion multipli-
cation and ¢ is the true anomaly (it characterizes
the spacecraft position on its orbit).

Let us denote as oy, ¢, and u, (k = 1, 2, 3)
the projections of the vector of the absolute angular
velocity @ of the m coordinate system and of the
vectors ¢ and u onto the axes of the n coordinate
system. These quantities are subject to the following
relations (r = |r|)

uy=u, =0, u3=u,¢c;,=¢c,=0,c5=c
o = urfc, =0, o3 =cr

Let us write equations of motion in the rota-

ting coordinate system n using the variables r, ¢, A

(G=0,12,3)[l6]

2N =
0, =

ks, 20 = kg T oz)y,
= o3y ~ ody, (L1

2. (1.2)

_(,03}\.1 + (,017\.3, 27\.3.

r=p(l + ecosp)” !, ¢ = const, ¢’ = cr

where p and e are the orbit parameter and eccentricity.
Subsystem (1.1) can be written in the quaternion
form
2 (ur/o)i; + (cr )i,

= A.o(l)n, (Dn = (,Olil + 0)3i3 =

J

where the quaternion o, is the mapping of the
vector @ onto the basis set .

Note that when r = const (in the case of a circu-
lar orbit) and u = const, (1.1) are linear differential
equations with constant coefficients. Therefore (1.1)
is very convenient and effective from the analyti-
cal point of view. In this paper the problem of the
optimal reorientation of a spacecraft orbit is inves-
tigated using (1.1) and (1.2).

We can use angular elements of an orbit (they
characterize the orientation of the spacecraft in-
stantaneous orbit in space) and the true anomaly to
find the components 2, of the quaternion A. Let us
denote the longitude of the ascending node as Q,,
the orbit inclination as I and the pericenter angular
distance as o,.

Then we have

Ao = cos(I/2)cos((Q, + o, + ¢©)/2),
M = sin(l/2)cos((Q,—w,—¢)/2),
Ay = sin(l/2)sin((Q,—o,—9)/2),

Ay = cos(1/2)sin((Q, + o, + 9)/2). (1.3)

Let us write (1.3) in the quaternion form

A = [cos(Q,/2) + i55in(Q,/2)]°[cos(1/2) +
+igsin(Z/2)]°[cos((w, + ¢)/2) + izsin((o, + ¢)/2)].

For comparison we write below the equations in
angular osculating elements [17, 18], which are usu-
ally used in astrodynamics instead of (1.1)

o

U

= u(r/c)sinX cscl, I' = u(r/c)cosZ,
o, = u(r/c)sinX cotl,
where £ = o, + ¢ (latitude argument).

Note that when » = const (in the case of a cir-
cular orbit) and u = const, (1.1) is a linear differen-
tial equation with constant coefficients. Therefore
equations (1.1) are very convenient and effective
from the analytical point of view. In this paper the
problem of the optimal reorientation of a spacecraft
orbital plane is investigated using (1.1) and (1.2).

2. Statement of the problem

It is required to transfer spacecraft whose motion
is described by equations (1.1), (1.2) from specified
initial state:

=1

=0, ¢(0) = o,
0 ¢(0) = ¢

A(0) AOO(COS((Po/z) + i3 sin(gy/2))  (2.1)
into the final state (the final time {"is unknown and
we have to determine it)
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t=1=2%00) =09,
=y 753 + N 73)/ (oM — ; 7»27%)2
=) — )7 — )+ ()

with the bounded (in magnitude) piecewise constant

tan Q

cos [ 2.2)

control (k=1, 2, ..., M)
u() = uy, ecnm t_; < t< 1. (2.3)
Also we have to minimize the functional
J = ’j u’dt. (2.4)
0

Note that in contrast to the papers [19, 20]; the
quantity of active motion parts M is not given. We
have to determine this quantity. It is known [16]
that in this case, the control that maximizes the
Hamilton-Pontryagin function has the form (2.3).

Here constant angular elements Q,", I” describe
the final orientation of the spacecraft orbital plane.
The values of ¢, p, e, AO, 0, Qu* and I are assumed
to be specified. And we have to find all u;, (k=1
2, ..., M) which are values of control on adjacent
parts of spacecraft active motion. Also we have to
determine the lengths of these parts A, = #, —
k=12,..,M).

Functional (2.4) corresponds to the value of en-
ergy consumption for a spacecraft interorbital flight.

Note that, in contrast to the paper [21], the final
value of the pericenter angular distance is not fixed.
So the position of the final orbit in its plane may
be arbitrary.

Ti—1

3. Numerical algorithm

All equations and relations of the obtained bound-
ary value problem were written in the dimensionless
form. The relations between dimensionless variables
and its d1men51on analogues are glven by the formu-
las: r=Rr¥, t = TA u=u_, u” Here R is a scale
factor for dlstance (R is close to the major semi-axis
of the spacecraft orbit), Vis a scale factor for velocity,
C is a scale factor for sector velocity, and 7 is a scale
factor for tlme determined by following formulas
V= (fM/R) C=RVand T= R/V. Also there is
a dimensionless parameter N* = u_. R*/C? in the
equations describing the spacecraft and its orbit.

The equations of the motion of the spacecraft
center of mass take the following dimensionless
form (superscripts "dl" are omitted)

27t =Moo, o, N11+r',
¢ —cr2 r—(l+ecos<p)

The dimensionless optimal control is subject to
condition —1 < u < 1.

Earlier in paper [22] the posed problem was solved
with the help of the Pontryagin maximum principle.
As a result of the maximum principle application,
a boundary value problem with a movable right end
was obtained. It was solved numerically using the
shooting method [23]. It is known that we have no
analytical expressions for conjugate variables in this
problem. Various kinds of shooting method do not
converge well and usually find only local minima of
minimized functions. In this paper we constructed
a new genetic algorithm; it does not involve conju-
gate variables. Note that classical genetic algorithms
deal with chromosomes of the same length. But in
our problem the quantity of spacecraft active motion
parts (the length of chromosome) is not given. To
construct algorithm for variable chromosome length
we use the approach proposed in [24, 25].

Note that direct methods of optimization that
do not require conjugate equations were considered,
for example, in [26, 27]. The main stages of our
algorithm were taken from [28].

Let the spacecraft orbit is circular (i.e. e = 0 and
r = 1). Note that the eccentricity of orbits of the
satellite groups GLONASS and GPS is close to zero.

At the first step we randomly generate a popula-
tion of N, chromosomes (N, is even). Each of
them equals to M three- element groups: (uy, A, by),
(k=1,2, .., M). Here A, = t, — 1, is the length
of k-th actlve motion part; bk equals to "True", if
the gene forms the control and b, equals to "False"
otherwise. Genetic algorithms usually deal with an
integer numbers so we should not store in the me-
mory real numbers u;, and A;. Gene is formed by in-
teger numbers u,"™ and A", (0 < ul™, AJM'< 2L — 1),
The relationship between integer and real numbers
is given by the formula

Uy = -1+ 2ulim/(2L =D, A= max mt/(2L 1).

Here AT, is the given maximum duration of
active motion part.

It is necessary to introduce the effective length of
the chromosome 0 < M, < M. M,y is the number
of chromosome genes involved in control forma-
tion, i.e. the number of groups whose last element is
equal to "True".

Thus, the proposed algorithm will be used to
search for a solution, provided that the number of ac-
tive sections of spacecraft motion does not exceed M.

At the second stage we compute the final orien-
tation of the orbital plane for each chromosome by
the well-known formula [29]:

AMt) = Mt—y)°(cos(0.50A,) + o 'sin(0,50A)a?),
o’ = (NubP)i, + i;, o = |0’ = const  (3.1)
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with initial conditions (2.1) (control corresponds to
chosen individual). Fitness function is given by the
formula

err(f) = {[tan QZ — (MAg + M)/ (N — 7»27»3)]2 4
+ [cosI™ — ()2 + ()2 + ()2 — ()?305.

The fitness function equals to zero at the point
t = t when the conditions (2.2) are satisfied.

The value of the fitness function is smaller for
the chromosome describing more fitting candidate
solution. When this value is less than the given small
number ¢ then the algorithm stops, because we have
found the optimal control for our set of parameters.
The maximum number of iterations should not ex-
ceed N, M.

At the third stage the half of the chromosomes
with the highest (worst) values of the fitness function
is discarded. Then we should cross the chromosome
with the lowest value of the fitness function with
all the others. Two chromosomes with k-th genes
@™, A" bly and @', A", b}) are crossed
using the intermediate recombination [28]. Corre-
sponding child gene (u;"", A", b}) is created by the
formula (—=0.25 < oy < 1. 25)

u/l{l’lti" — u;{ntl + a (umt2 _ umtl)

Alim‘r — A;;ntl + ak(Alimz mtl) bk — bk v bk-

Each gene has different random number oy.
The resulting child genes are integers from the in-
terval [0; 2L — 1]. After crossing we will get a new
population from N,,, chromosomes. Note that in
this case, the effective length of the child chro-
mosome (the quantity of active parts of spacecraft
motion) will not be less than the effective length
of the parent’s chromosomes. In order to decrease
this quantity, we should sometimes change the
logical operator in crossover to the exclusive dis-
junction (@) instead of the inclusive disjunction
operator (v).

We should change one logical operator to an-
other with probability 1/2.

At the last step of the algorithm the fitness func-
tion is averaged for new population. If it is increased,
then individuals in the population will mutate. The
rule of mutation is following: genes are written in
binary form and randomly selected bit of each gene
is inverted with probability p,,,, € (0; 1]. After this
we should return to the second step of the algorithm.

We should generate solution for a few initial pop-
ulations and then we have to choose the one that
corresponds to the reorientation of the spacecraft
orbital plane with less energy consumption.

4. Examples of numerical solution of the problem

The quantities characterizing the forms and di-
mensions of spacecraft orbit, initial and final ori-
entations of spacecraft orbit are equal to (a,, is the
semi-major ax1s of an 0rb1t QO = Q,0), 1= 1(0),
ol = (0); Q,=,@), I = 1) 21];

a,. = 37936238. 7597 m,

Upay = 0.101907 m/sec?, N = 0.35;
final spacecraft position (it corresponds to the
orientation of the orbital plane of GLONASS
satellites): Q," = 215.25°, I' = 64.8°; initial spacecraft
position (¢, = 2.954779 rad):

variant 1 (small difference between initial and
final spacecraft orbits):

90—2120 10—630 o) =0.0%
Ay = —0. 235019 Al — 144020
A2 = 0.502258, A3 = 0.819610;
=—0. 663730 xl = (.518734,
= —0.062608, 1; = —0.535217;

variant 2 (big difference between initial and final
spacecraft orbits):

Q0 =240.0°, I’ = 45.0°, ©0 = 0.0%
Ag = —0. 461940 Al = —0.191342,
; = (.331414, A3 = (.800103;

= —0.557524, & = 0.379734,
x;‘ = 0.047420, 1; = —0.736696;

Scaling factors are equal to R = 26 000 000 m,
V= 2751.405874 m/sec, T = 9449.714506 sec. These
parameters of spacecraft motion were taken from [30].

The parameters of the genetic algorithm were

equal to L = 100, N,,, = 10000, p,,,,= 0.9.
Table 1
Results of the genetic algorithm (variant 1)
AT, My r J

0.3 3 0.403261 0.080510
0.4 3 0.475630 0.064673
0.5 2 0.523537 0.060166
0.6 3 0.503634 0.061228
0.7 2 0.504410 0.060858
0.8 2 0.534701 0.059792
0.9 2 0.477408 0.062733
1.0 2 0.941512 0.065030
1.5 2 1.122376 0.071938
2.0 2 0.649684 0.061406
2.5 2 0.527765 0.062669
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In table 1 the results of the numerical solution
of the problem for different values of the maximum
duration of active motion part A7}, are presented
(variant 1). Earlier in the paper [19] less optimal
solution for this variant was found. When the final
time 7 and the quantity of active parts were fixed,
the minimal value of the functional J was equal
to 0.060134. The genetic algorithm proposed in the
present article can determine the duration of the
flight and now the minimal value of the functional
equals to 0.059792.

Figure 1 presents the results of numerical solu-
tion of the problem of reorientation of the spacecraft
orbital plane for AT,,, = 0.8 when the functional J
reaches its minimal value. Here the time of flight
of the controlled spacecraft equals to 5052.771796 s.
(1.403547 h.).

The longitude of the ascending node and the or-
bit inclination are in degrees, all other quantities
are dimensionless. We can see that graphs of behav-
ior of the angular elements of the spacecraft orbit
are close to linear on both parts of active spacecraft
motion. Also the components of quaternion A are
slowly varying functions.

Note that the use of analytical formulas (3.1) in-
stead of numerical integration of equations (1.1) by
Runge-Kutta method can significantly speed up the
algorithm. While maintaining an acceptable dura-
tion of calculations, it becomes possible to increase
the number of individuals in the population by sev-
eral orders of magnitude and find a solution to the
problem faster.

In table 2 the results of the numerical solution of
the problem for variant 2 are presented.

I VS S T
0 01 02 03 04 05¢
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|
|
|
|
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|

|
I

‘ ‘ ‘ ‘ i

0 01 02 03 04 05 ¢
I

|

I

Fig. 1. Circular orbit, variant 1:

a — Components of the quaternion of orientation of the orbital
coordinate system; & — The longitude of the ascending node; ¢ —
The orbit inclination; d — Optimal control

Table 2
Results of the genetic algorithm (variant 2)
AT M, f J
0.3 8 2.209146 1.521154
0.4 6 2.346797 1.436910
0.5 5 2.266918 1.410721
0.6 7 2.515689 1.345384
0.7 5 2.452568 1.422379
0.8 4 2.550990 1.588569
0.9 4 2.350388 1.442013
1.0 4 2.909870 1.433450
1.5 4 2.790892 1.350903
2.0 3 2.641818 1.352611
2.5 3 2.224977 1.455960

Figure 2 presents the results of numerical solu-
tion of the problem of reorientation of the spacecraft
orbital plane for AT,,,, = 0.6 when the functional J
reaches its minimal value. Here the time of flight of
the controlled spacecraft equals to 23772.542836 s.
(6.603484 h.).

It was found that in this case ranges of variation of
the components of the quaternion of orientation of the
orbital coordinate system are bigger than in the case
of small difference between initial and final orbits.

Note that in this case the graph of behavior of
the orbit inclination is close to linear only on the
last part of the spacecraft active motion.

The longitude of the ascending node is close to
its desired value at r = 1.703. But the inclination at
this point equals to 53.573".

Fig. 2. Circular orbit, variant 2:

a — Components of the quaternion of orientation of the orbital
coordinate system; & — The longitude of the ascending node; ¢ —
The orbit inclination; d — Optimal control
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Also we should note that in this case (variant 2)
the number of active motion parts is bigger than in
the case when the difference between angles that
describe initial and final spacecraft orbit equals to a
few degrees (variant 1).

Conclusion

In this paper we discussed the problem of circu-
lar spacecraft orbit reorientation for the case when
the final time of the process is not given. The con-
structed numerical algorithm is able to quickly find
quasi-optimal spacecraft trajectories. Examples of
numerical solution show its efficiency. The advan-
tage of suggested algorithm compared to the shoot-
ing method is that we do not have to choose initial
approximations for the unknown values of conjugate
variables. Next time we will try to modify the pro-
posed algorithm to deal with elliptical orbit. Also
we plan to apply genetic algorithm to the case when
the control u is not orthogonal to the orbit’s plane.
In this more complicated case spacecraft orbit will
change its form and dimensions.
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