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Analysis of a Cart-Inverted Pendulum System
with Harmonic Disturbances Based on its Criterion Matrix

Abstract

The control of an inverted pendulum is a classical benchmark control problem. lts dynamics resemble that of many real-world
systems of interest like pendulous, missile launchers, segways, and many more. The control of this system is challenging as it is a highly
unstable, highly non-linear, non-minimum phase system, and underactuated. Furthermore, the physical constraints on the track position
also pose complexity in its control design. A great deal of nonlinearity is present inherently and as well as affected by the surrounding
external disturbances. The paper presents an approach for analysis of a cart-inverted pendulum system with harmonic disturbances. The
approach is based on the index of the criterion matrix of the system named a degeneration factor. The degeneration factor is constructed
with the singular values of the criterion matrix of the system and allows us to find frequency range, where the system operates as a whole.
A linear-quadratic regulator is used to control the cart-inverted pendulum system. The results are supported with an example.
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AHanus cuctemMbl "MassTHUK—Terexka" npm BHeLWWHEM rapMOHNYECKOM
BO3AEMNCTBMM Ha OCHOBE KpUTepuaribHOU MaTpuLibl CUCTEMbI

Ynpaenenue nepeseprymoim MASMHUKOM HQ meaedcKe A6A5emcs KAaccuueckol 3adaueli meopuu ynpaeaenus. Junamuxa nepe-
BEPHYMO20 MASMHUKA CX0XHCA ¢ OUHAMUKOU MHO2UX PeanbHbiX cucmem, npedcmasisiouux npaKmuveckuil unmepec, makux Kax
MAAMHUKOBble CUCMeMbl, PaKemHble NYCKO8ble YCMAHOBKU, Cueéeu U MHoeue dpyeue. Ynpaeienue makoi cucmemou s6asiemcs
CAOJCHOU 3a0aueli 6 CUNY HeYCMOUYUBOCMU U HeAuHeuHocmu cucmemsl. Kpome moeo, gusuueckue oepanuuenus, HaKAaovleaempie
Ha cucmemy, maKice YCAONUCHAOM NPOUecc NPOeKMUPOBAHUS cucmembl ynpasienus. Boavwas uacme neaunelinocmeti 00ycaoeieHa
KaK camoll KOHCMpYKyuell cucmembl, maKk U AUSHUEM GHEUWHUX 603MYUeHUll pa3au4Ho2o xapakmepa. B cmamve npedcmas-
JNeH n00X00 K AHAAU3Y CUCMmeMbl "MASMHUK—menexdcKa", (pYyHKUUOHUpyrouell 8 yCA08UAX 6HEUWHUX eAPMOHUYECKUX 6030elicmeuUll.
TIpeonaeaemviii n00X00 0CHOBAH HA UCCAEO0BAHUU XAPAKMEPUCTNUMECKO20 NOKA3AMENS KPUMEPUANLHOU MAMPUYbL CUCIEMbL, UMe-
HYyem020 QYHKUUOHAA 8bipodcOerus. DYHKUUOHANA BbIPOINCOEHUS, CKOHCMPYUDOBAHHbII HA CHEKMpPe CUHSYAAPHbIX YUucen Kpumepu-
ANbHOU MAMPUYbL CUCMEMbL, UCNOAb3YEMCA KAK KAYeCMEeHHbI NOKA3amens, No360AS0WUL onpedeiums OUana3on 4acmom 2ap-
MOHUHECK020 8030elicmeuUs, Ha KOMOPOM CUCmemMa QyHKYUOHUPYem KaK eduHoe yenoe. s ynpaeaeHus CUucmemoll nepeeepHymozo
MAAMHUKA HA MeAedcKe UCNOAb3Yemcs AUHelHO-Keadpamuunbiil pecyaamop. [Ipedaazaemoiii n00X00 uaAOCmMpUpyemcs npuMepoM.

Karoueenie caosa: nepegeprHymolil MasMHUK HA meaedcke, Kpumepuaivhas mampuya, ypaenenue Curvéecmpa, QyHKyuo-
HAA BbIPOJICOEHUS, 2APMOHUUECKOe GO3MYUleHUe, NUHETIHO-K8AOPAMUYHbII PecyAsimop
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Introduction

An inverted pendulum on a cart is an unstable
nonlinear system that is often used to test the perfor-
mance and effectiveness of control algorithms [1—9].
Many algorithms have been successfully applied to
this model such as PID control [1, 2, 8], fuzzy logic
control [3, 4], neural network [5], sliding mode control
[6, 7], and linear—quadratic regulator (LQR) control
[8, 9]. In these papers, the authors only presented the
inverted pendulum is affected by the random noise
or moved from the initial position to the equilibrium
position without mentioning the effects of harmonic
disturbances. Harmonic disturbances are common
signals in practice [10, 11], they have great influences
on the working process of MIMO systems [12]. Dur-
ing the working process of the MIMO system, there
are many harmonic disturbances that cause instabil-
ity and degeneration [12, 13]. For example, when the
system moves on an undulating or vibrating surface.

In this paper, the authors present an approach
for analysis of a cart-inverted pendulum system with
harmonic disturbances. The approach is based on
the index of the criterion matrix of the system named
a degeneration factor [14—16]. The degeneration fac-
tor is constructed with the singular values of the cri-
terion matrix of the system and allows us to find fre-
quency range, where the system operates as a whole.
A linear-quadratic regulator is used to control the cart-
inverted pendulum system. The proposed approach
consists of two steps. The first step is the criterion
matrix construction. The second step is degeneration
factor calculation with the further analysis.

The paper is laid out as follows. The problem for-
mulation with the description of the researched mod-
el is given in Section 1. Then, the control design pro-
cedure for the inverted pendulum on a cart system is
described and the methodology for the criterion ma-
trix constructing is presented in Section 2. Thereaf-
ter, simulation results of the designed control system
with harmonic disturbances are depicted. The cases
of harmonic disturbances of different frequencies are
considered. The researched system is analyzed with
the degeneration factor of its criterion matrix. As the
result, a frequency range, where the system operates
as a whole, is defined. The paper is finished with
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Fig. 1. Inverted pendulum on a cart

the mathematical model that describes the inverted
pendulum. The inverted pendulum model consists of
a cart and a pendulum (Fig. 1). The position of the
cart and the angle of the pendulum are able to be
controlled. It supposes that frictions and moments
of inertia are ignored. The nonlinear model of the
Inverted Pendulum is constructed by using the Euler-
Lagrange equation.

The kinetic energy of the pendulum can be
calculated as

ey

The kinetic energy of the cart satisfies the fol-
lowing expression:

T, = %m)'c2 +mix6 cos(0) + %mlzéz.

1

T.=3 Mx?, )

Then, the kinetic energy of the system is given by
T=T,+T,=

3

= %(M + m)x2 + mlx6 cos(0) + %mlzéz.

The potential energy of the system is described
by the following expression

some concluding remarks. U = mglcos(0). “)
Then, the energy of the inverted pendulum:
1. Problem formulation 1
_ _ , » L=T-U==(M+mx*+
The inverted pendulum is easily destabilized 2 6)
under the impact of disturbances on the position of I 1 200
0 0) + —ml“0° —mgl 0).
cart and the angle of pendulum. Firstly, we consider + mixdcos(6) + 2 " mgl cos(9)
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Consider the Euler-Lagrange equation:

d(oL) oL 5
arlax) xR
(6)
4oy ety
dr\ o6) 00
Combination of (5) and (6) results in:
(M + m)i — ml sin 06° + ml cos 00 = u — kx; ™
ml%0 — mglsin ® = —mlx cos 0.

Then, the state-space model representation of
the inverted pendulum can be described in the fol-
lowing form:

fCl = X2;
5 mlsin x;x; — mg cos X3 sin x; + u — kx, _
2= . 7 >
M + m(sin x3)
X'3 = X4; (8)
: 2
mlsin x; COS X3x5 —
o = (M + m)gsin x; + ucos x3 — kx, COS X3
4 = N s
—(M + m(sin x3)2)

where x; = x; x, = X; X3 = 0; x4 = 6.

Equations (8) get the balance point x; = 0; x, = 0;
x3 = 0; x, = 0. The linearized state equation of the
Inverted Pendulum has the form as follows:

. 01 0 0 0
oo = o2 %
% |0 0 0 1| x; o |
x4 00(M+m)g0x4 _L
L Mi i Ml |

where x — distance (m); x — velocity (m/s); X —
acceleration (m/s%); @ — angular (rad); 6 — angular
velocity (rad/s); 6 — angular acceleration (rad/sz);
F — force (N); k — friction coefficient (Nm/A);
g — gravity acceleration (m/s?); M — mass of the
cart (kg); m — mass of pendulum
(kg); [ — length of the pendulum (m).

From the differential equations
describing the inverted pendulum (8),
if a disturbance signal acts on the po-
sition of the cart or the angle of the
pendulum, it will lead to instability or
degeneration of the system. Then, the
aim of the paper is to analyze the sys-
tem behavior for the case of harmonic
disturbances of different frequencies

and find a frequency range, where the system oper-
ates as a whole.

In the next section, we will design the control
law and describe the methodology for the criterion
matrix constructing.

2. Control design method

A. Control law design
Jor inverted pendulum on a cart

The idea of control law design for MIMO sys-
tems with harmonic disturbances is proposed in the
works [14—16]. The algorithm will be applied to the
researched inverted pendulum system. Consider a
state-space model representation of the system in
the following form:

{X(t) = Ax(?) + Bu(?); (10)
y(7) = Cx(?),
[0 1 0 0] 0 ]
oo _m 1
M M
h A= ; B= ;
where oo o0 1| 0o |
0 0 M +m)g 0 b
L Mi ] L Ml ]
C= 10007 u, X, y are control input, state vector.
- 0 O l O 5 b 9 y p bl bl
and output, respectively; X = [x; x, X3 x4]T e RY

wye R
We assume that the harmonic disturbances af-
fected on the inverted pendulum is given as

g() = ysinwt, (11)

where y and o are the amplitudes and the frequencies
of harmonics disturbance, respectively. The control
diagram of the inverted pendulum on a cart system
is shown in Fig. 2.

. The controller of the inverted pendulum on a cart
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The control algorithm is proposed in the follow-
ing form:

u(?) = Kgg() — Kx(@), (12)
where K, is the feedforward scaling factor, and K is
the gain of negative feedback.

The combination of dynamic model (10) and the
control algorithm (12) allows us to get the closed-
loop system:

x(1) = Fx(7) + Gg(1); x(0),y(0) = Cx(7), (13)
where F = A — BK, G = BK,. The resulting matrices

of the system are used to obtain the criterion matrix
of the inverted pendulum on a cart system.

B. Criterion matrix constructing

The state-space model representation for the in-
verted pendulum on a cart system with controller is
given by:

{X(t) = Fx(?) + Gg(1); x(0); (14)

y(7) = Cx(1),

where x, g, y are the state vector, the input vector,
and the output vector, respectively; x € R*, g,y € R%;
F, G, C are the state matrix, the input matrix, and
the output matrix respectively, where F e R¥4 G,
Cc’ e R4,

An exogenous disturbance g(7) is considered in
the following form

(1) = Ez(?); z(0); (1) = Pz(?), 15)

where z € R’ is the state vector of the disturbance
model; E, P are the state matrix and the output ma-
trix, the matrix P satisfies the condition PP’ = I,
here I is the identity matrix (I e R*¥%).

Assume, the exogenous disturbance (15) be a har-
monic disturbance with the frequency ®. Then, we
have representation of matrix E in the following form

0 o 0 O
-o 0 0 O
E = . 16
0 0 0 o (16)
0 0 -0 O

The criterion matrix of the system with harmon-
ic disturbance [16] can be given by

N = CT(o), 17)

where T is the similarity matrix, that satisfies the
Sylvester matrix equation [14-15] as

TE — FT = GP. (18)

The singular value decomposition (SVD) [17-19]
of the criterion matrix of the system is used to calcu-
late its degeneration factor [14] in the following form

A i
’ min
Dl —_— —_—,

(19)

max

where o,;, and o, are the minimum and the
maximum singular values of the criterion matrix
respectively. The degeneration factor reflects the
behavior of the system and allow us to find frequency
range, where the system operates as a whole.

Example

Consider the inverted pendulum on a cart sys-
tem with the following parameters: M = 2(kg),
m = 1(kg), [ = 0.5(m), g = 9.81(m/s%). In the simu-
lation, we use Linear—quadratic regulator (LQR)
controller. The block diagram of the system with
external harmonic disturbance is shown in Fig. 3.
We can change the frequencies of inputs on two
channels: the position of the card and the angle of
the pendulum.

The degeneration factor for the inverted pendu-
lum on a cart system with LQR controller is illus-
trated in Fig. 4. Obviously, the system operates as
a whole, when the frequency of harmonic distur-
bances more than 355 .

Fig. 5 shows the behavior of the inverted pen-
dulum with LQR controller without harmonic dis-
turbances. The inverted pendulum moves from the

frequency w1 — harmonic disturbance on Cart %(t} - Position of Cart — :I

*(t)

gl

frequency w2 [~ harmonic disturbance on Pendulum  phi{t) - angle of Pendulum |— [:]

g2(t)

Inverted Pendulum with Controller

Fig. 3. The simulation model of the inverted pendulum on a cart
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Fig. 5. The behavior of the system without harmonic disturbance

initial point (x = 0.5; 6 = 0.2) to the equilibrium
point (x = 0; = 0) with no setting error.

Fig. 6—8 show the inverted pendulum on a cart
system with harmonic disturbances affected on the
position of the cart and the angle of the pendulum.
Fig. 6 illustrates the case frequencies of harmo-
nic disturbances o = 0.1s7!, the pendulum and the
cart have big oscillations at the equilibrium point
(6 = 0). When we change frequencies of harmonic
inputs to @ = 10s ', then the oscillations are de-
creased (Fig. 7). When frequencies of harmonic
disturbances are ® = 100s~! (Fig. 8) the inverted
pendulum and the cart operates as a whole at equi-
librium point (x = 0; 6 = 0). The results correspond
to the degeneration factor data.

| |
| |
| I I 1 |
| 08 i = x{m)- posifon of Cart |
| \ | hi{rad) - angle of Pendulum |
: orfd 1 :
R |
1 06— I
| |
| os \ |
l ' :
| 04 + |
| 1 |
| o3 |
I i I
| 0z 1 |
| |
| L |
: 0.1 :
I o ,‘. - 1 |
| Y — |
1 1 - |
| - |
il g v — |
I ~ --1" I
| 02 - - |
] 2 4 [ 8 10 12 14 1 18 2
| Time (seconds) |
| |
| |
S LS G MM SN g MU M A S S M N Sy J

Fig. 6. The behavior of the system with the frequency of harmonic
disturbance o = 0.157!
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| \ |
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| Time (seconds) :
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Fig. 7. The behavior of the system with the frequency of harmonic
disturbance o = 105!
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Fig. 8. The behavior of the system with the frequency of harmonic
disturbance o = 100s~!
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Conclusion

The paper presents an approach for analysis of an
inverted pendulum on a cart system with harmonic
disturbances. It is proposed to use the degeneration
factor of the criterion matrix of the system as a tool
for analysis. The degeneration factor is constructed
with the singular values of the criterion matrix of
the system and allows us to find frequency range,
where the system operates as a whole. Also, the ap-
proach can be applied to the linear multidimen-
sional systems with harmonic disturbances.

In the future, the authors are going to expand
the results to the case of double inverted pendulum
system.
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